
The fitness landscape of social norms
in social dilemmas

Maximilian Puelma Touzel∗
Department of Computer Science

Université de Montréal
Montréal, Canada

puelmatm@mila.quebec

Abstract

By specifying behaviour across multiple agents, social norms are a coordination
approach to resolving social dilemmas. Decentralized and wide adoption can be
achieved by norms whose prescription involves interpreting stochastic signals in the
environment. Such signals must have enough correlation to orchestrate mutually
beneficial coordination and enough disincentivizing uncertainty about the benefits
of exploiting that coordination. Evolutionary game theory of matrix games has
been used to describe how, by rational agents comparing and adopting norms, a
norm can evolve to become dominant in a population. Morsky and Akçay [2019]
classify norms according to a set of rationality criteria and prove that norms that
are consistent with reward-optimal choice dynamics of local social interactions
implement correlated, rather than Nash game theoretic equilibria. Here, we present
a version of this theory that clarifies the basic ingredients. We formulate it in the
more general Markov game setting more commonly used in reinforcement learning
theory. We illustrate the theory by mapping norms over the signal and reward
space, while also giving a detailed exposition of the underlying mechanics of the
approach. Finally, we give a generic analysis of replicator dynamics, which Morsky
and Akçay [2019] propose as a means by which these norms could emerge.

Introduction

In the epistemic perspective on game theory [Aumann, 1987], uncertainty about opponents’ strategies
is framed as an inference problem that must tackled in pursuit of an optimal strategy2. Through
any consistent calibration process [Foster and Vohra, 1997, Hart and Mas-Colell, 2000], each player
learns to infer a posterior over the plays of the opponent given the player’s observation of the state.
The natural Bayes optimal strategy is then for a player to take the action that gives the highest
posterior-averaged utility. Surprisingly, this fundamental process does not lead to the celebrated
solution concept of a Nash equilibrium3, but rather to the lesser known concept of a correlated
equilibrium.

Morsky and Akçay [2019] present a theory for how correlated equilibria emerge endogenously
through an evolution of social norms. Here, we present a minimal version of their theory (e.g.
without partitions) using the notation of reinforcement learning theory and illustrate it with an
application to the game of chicken. To demonstrate the theory, Morsky and Akçay [2019] take the
well-established approach to gaining theoretical traction in evolutionary dynamics of game-playing
agents by considering a dynamics wherein pairs of agents are selected at random for interaction4.

∗mptouzel.github.io
2Note that optimal strategies for perfect knowledge settings (e.g. of other agents) are always pure strategies.
3Which assumes, unrealistically, that the player knows the policies of the opponent.
4This strong assumption can be relaxed by moving to a finite population description in which interactions are

specified (e.g. assortative or via a given social graph) at the expense of having to resort to numerical analysis of
solutions [Hilbe, 2011].
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Under this assumption, a norm selection dynamics can be faithfully represented through a particularly
simple mean-field description called replicator dynamics. After presenting our exposition of the
theory, we give a complete characterization of the game family of the game of chicken and then go
on to give a general formulation and analysis of replicator dynamics.

Related Work

This work translates ideas at the intersection of evolutionary game theory and sociology to the
multi-agent reinforcement learning research field. The concept of correlated equilibria was introduced
by the works of Aumann [1987]. Sociologists then proposed correlated equilibrium as a concept
central to social norms [Gintis, 2010] and game theoretic work on this topic, albeit sparse, extends
back decades[Axelrod, 1986] (see Morsky and Akçay [2019]’s account of this literature). In parallel,
correlated equilibria have been studied for decades in the multi-agent reinforcement learning (MARL)
theory community, with seminal contributions from the group of Amy Greenwald, e.g. Greenwald
and Hall [2003]. The recent work in that field is expanding its realm of applicability, e.g. to extensive
form games Anagnostides et al. [2022] (and references therein). Separately and much more recently,
the emergence of social norms has been studied empirically using deep reinforcement learning agents,
e.g. Köster et al. [2022] and Vinitsky et al. [2023]. Our work aims to motivate the intermingling
of these empirical and theoretical traditions by developing the evolutionary game theory of social
norms as studied in evolution and social science in the setting most relevant to models of multi-deep
reinforcement learning agent systems that are currently being used to explore the social dimensions
of artificial intelligence.

Background

Markov Game Social Dilemmas We focus on the two-player partially observable Markov game
setting. In this simple illustration, we assume state transitions do not depend on the actions and
rewards do not depend on the state. We also restrict ourselves to the symmetric case. Accordingly,
we denote the player with unprimed variables, while those of the opponent are primed. All sets are
discrete.

The environment is a set of states S. State information available to agents is bounded by (possibly
stochastic) observation functions p(o|s) and p(o′|s) for observations o and o′ from observations
spaces O and O′ for player and opponent, respectively. Action-independent state transitions are given
by T (s̃|s) where s̃ is the next state. We assume a stationary environment so the state description
reduces to the stationary state distribution p(s) defined implicitly by p(s̃) =

∑
s T (s̃|s)p(s). The

(in general state-correlated) joint observation distribution is then p(o, o′) =
∑

s p(o|s)p(o′|s)p(s).
For ps denoting the vector representation of p(s) and Poo′ denoting the matrix representation of
p(o, o′), we have the matrix expression Poo′ = Po|sdiag(ps)P

⊤
o′|s, where Po|s is the |O|×|S| matrix

representation of p(o|s) and similarly for p(o′|s)5. With the state variable marginalized, we hereon
represent the environment by Poo′ .

A player policy (a possibly mixed strategy) π : O → ∆|A|−1 is a mapping from the observation
space to distributions on an action space, A. π can be represented as a |A| × |O| matrix Pa|o, such
that

∑
i(Pa|o)ij = 1 for all j. A deterministic policy (pure strategy) corresponds to policies for

which (Pa|o)ij ∈ {0, 1}. The opponent’s strategy π′ is defined similarly.

In practise, O will be a large space of which only a small part of which will be useful as signal by the
agent for any given task. Here, we will assume that the agent has performed this selection and that
O is the signal space it attends to get suggestions for how to act. Thus, we assume |O| = |A|. To

5In this two-player, stochastic policy setting, the matrix algebra of the probability theory of two-dimensional,
discrete random variables is useful. Namely, for a matrix representation of a joint distribution on x and
y, Pxy , the marginals are computed as px = Pxy1 and py = P⊤

xy1. Independence is the factorization
condition Pxy = pxp

⊤
y (when x and y are binary, Pxy is determined by the marginals and the correlation,

ρ, Pxy = pxp
⊤
y + ρ

√
σ2
xσ2

y

[
+1 −1
−1 +1

]
, where σ2

i = det(diag(pi)) for i = x, y is the variance of x and y

respectively). The expectation of a scalar function f(x, y) is computed as E(x,y)[f(x, y)] = tr(FP⊤
xy), where

variable F is the matrix of f(x, y) function evaluations. Adding conditional dependence via a correlated pair of
random variables (x̃, ỹ) with joint distribution Px̃ỹ gives Pxy = Py|ỹP

⊤
x̃ỹP

⊤
x|x̃, where Py|ỹ and Px|x̃ are the

matrix representations of the respective conditional distributions.
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map onto the simply symmetric matrix games discussed below, we identify the two action spaces
A = A′ (and thus also the observation spaces O = O′). We also assume the observation spaces
confer no player bias so the marginals p(o) and p(o′) are equal (achieved by the symmetry constraint,
Poo′ = P⊤

oo′ ).

A reward function in this symmetric player setting is a mapping r : A×A′ → R returning the reward
to a player for playing action ai ∈ A when its opponent plays a′j ∈ A′. We can represent r using
the |A| × |A| action reward matrix R where r(a = ai, a

′ = aj) = Rij . Note that unlike a general
Markov game, the reward here does not depend on the environment observations.

Canonical social dilemmas are two-player matrix games with a binary action space corresponding to
a cooperative and exploitative action. The reward matrix for such dilemmas is

R =

[
B S
T P

]
with

B, the benefit for mutual cooperation;
P , the punishment for mutual exploitation;
S, the sucker’s payoff for cooperating when the other has exploited; &
T , the tempting reward for exploiting when the other has cooperated.

(1)

In this setting, the conditions for a tension between individual and collective interests that characterize
a social dilemma [Macy and Flache, 2002] are that

1. B > P : mutual cooperation > mutual exploitation
2. B > S: mutual cooperation > being suckered
3. 2B > T + S: mutual cooperation > equal mix of unilateral cooperation and exploitation
4. a) T > B (greed): exploiting a cooperator > mutual cooperation

and/or
b) P > S (fear): mutual exploitation > being exploited.

Condition 3 ensures cooperation offers more than pure competition (i.e. to exploit and be exploited).
Condition 4 gives 3 classes of dilemmas

not greed greed

not fear no dilemma
B > T > S > P

game of chicken
T > B > S > P

fear stag hunt
B > T > P > S

prisoner’s dilemma
T > B > P > S

These conditions have been applied to the sequential decision-making setting relevant to reinforcement
learning to try to leverage the insight they have offered into matrix games [Leibo et al., 2017]. We
will focus on the game of chicken since it serves as the canonical example of correlated equilibria.

Game of chicken example In the case of greed and not fear, T > B > S > P characterizes
the canonical family of anti-coordination social dilemmas known as the game of chicken where in
one interpretation, A = {stop, go} defines the actions available to each of two cars approaching an
intersection from different roads. This game family captures the inevitability of conflict in the pursuit
of self-interest as a coordination dilemma: highest reward for go, but only when the other chooses
to stop, otherwise the reward is low for both agents (because they crash into eachother). The car
interpretation evokes the coordination solutions (traffic lights, the yield-to-the-right rule, etc.) that
have evolved to facilitate the resolution of this dilemma. For this reason, the game is often invoked
as a simple setting to explain a correlated equilibrium, a solution concept by which social dilemma
are rationally resolved. In this case, the game environment is augmented with observation spaces
(O = O′ = { , } in the traffic light solution) that provides signals to be interpreted as suggested
actions (e.g. the signal-following norm: to stop when is observed, and go when is observed).
There are multiple ways to represent this simple matrix game in the more general Markov game
setting outlined above. Here, we represent the game by defining observation functions as partitions on
the state space such that (Po|s)ij , (Po′|s)ij ∈ {0, 1}. The state space then naturally partitions into the
refined partition obtained by intersecting the two player’s partitions. This refined partition abstracts S
into |A|2 = 4 states, {( , ), ( , ), ( , ), ( , )}. In a minimal example, |S| = 4 and partitions can
be chosen such that the elements of Poo′ are those of ps = (p1, p2, p3, p4). For example,

Po|s =

[
1 1 0 0
0 0 1 1

]
, Po′|s =

[
1 0 1 0
0 1 0 1

]
=⇒ Poo′ =

[
p p
p p

]
=

[
p1 p2
p3 p4

]
. (2)
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The symmetry assumption on Poo′ , p = p , demands that p2 = p3. Having control over Poo′ here
means having control over ps. However, for the general case of a large S, given a fixed distribution
ps, control over Poo′ could also be achieved via the freedom in partitioning through the joint sculpting
of Po|s and Po′|s.

Correlated equilibrium Let us denote by S the system without the player’s policy, S =
(π′, p(o, o′), r) = (Pa′|o′ ,Poo′ ,R) . The average reward ρ for the player is then

ρ(π, S) = E[r(a, a′)|π, S] : =
∑

o,o′,a,a′

r(a, a′)π′(a′|o′)p(o, o′)π(a|o) (3)

= tr
(
RPa′|o′Poo′P

⊤
a|o

)
, (4)

where we omit the transpose on Poo′ since it is symmetric. ρ(π′, S′) is defined similarly where p′ is
p with swapped arguments (p′ = p for the unbiased observation distributions we consider here) and
r′ = r for this symmetric player setting. A policy Pa|o that maximizes ρ, i.e. tr(RPa′|o′Poo′(Pa|o−
P̃a|o)

⊤) ≥ 0 for any other policy P̃a|o, is best in expectation over all randomness including over the
observation, o, observed by the player. A stronger notion of optimality is that P is optimal for each
observation value o = oi, ((RPa′|o′Poo′)·i)

⊤(Pa|o − P̃a|o)·i ≥ 0 for all i6. Such a policy is called a
best response (BR) policy.

More generally, we can think of a (not necessarily factorizable) joint action distribution p(a, a′) =
Pa|oPoo′P

⊤
a′|o′ and the environmental observations simply as a means to generate action-action

correlations between the player and its opponent. In this context, a correlated equilibrium given r is
the observation ensemble p and a pair of deterministic policies (π, π′) that are best responses to the
expected behaviour of the other given their observations, i.e. for π̃ and π̃′ denoting any other strategy
for player and opponent, respectively,

((RPa′|o′Poo′)·i)
⊤(Pa|o − P̃a|o)·i ≥ 0 from the player’s perspective S , and

((RPa|oPoo′)·i)
⊤(Pa′|o′ − P̃a′|o′)·i ≥ 0 from the opponent’s perspective S′ .

(5)

A Nash equilibrium is the special case where the joint action distribution factorizes, p(a, a′) =
p(a)p(a′), i.e. the factorization condition Pa|oPoo′P

⊤
a′|o′ = pap

⊤
a′ into the outer product of its

marginal distribution vectors.

Social norm theory

A social norm is a belief to which an agent can subscribe that characterizes a social interaction
involving multiple agents. For a pair-agent interaction, a social norm for a player both prescribes
to that player how they should act in that interaction (via the prescribed policy, πprescribed, here
represented by Pa|o), and describes to that player how the opponent should act in the same interaction
(the described policy πdescribed, here represented by a policy matrix denoted Da′|o′). A norm as
a belief within a formal reasoning framework is thus represented as the matrix pair (Pa|o,Da′|o′).
These are deterministic assignments so Pa|o and Da′|o′ are binary-valued matrices with a single
non-zero entry per column. The total number of norms is then equal to the total number of unique
ordered pairs of policies, N = (|A||O|)2 norms.

Let n, n′ ∈ {1, . . . , N} index these pairs so that the average reward Γnn′ (hereon called the norm
payoff) for a player playing within a norm n that indexes (Pa|o,Da′|o′) against an opponent playing
within the norm n′ that indexes (P ′

a|o,D
′
a′|o′) is just ρ(π, S) (eq. (4)) with Pa′|o′ = P ′

a|o. The norm
payoff matrix is then denoted Γ = (Γnn′). While the descriptive part of a norm Da′|o′ does not
affect its payoff directly, it does affect whether it is rational for a player to adopt the norm. Morsky
and Akçay [2019] provide a classification of norms via increasingly strong notions of validity (c.f.
fig. 1). Namely, rational norms are those that are internally valid: the prescription Pa|o is never worse
than any other prescription P̃a|o given the description, Da′|o′ , else they are called null norms. Null
norms are never optimal so in that case the player plays a (observation-independent) default strategy
instead (Morsky and Akçay [2019]’s choice being that the player eschews null norms completely

6diag((RPa′|o′Poo′)(Pa|o − P̃a|o)
⊤) ≥ 0 gives the matrix form of the set of |O| inequalities (here the

function diag obtains the diagonal of its matrix argument).
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Figure 1: Classes of norms. Diagram taken from Morsky and Akçay [2019].

and plays the best Nash strategy). This default strategy competes with the prescriptions of norms
in any selection dynamics. Norms that are externally valid are called empirically validatable: the
prescription is rational against the prescription of another rational norm. If an empirically validatable
norm is validated by itself, it is called consistent, else it is inconsistent. Within the set of consistent
norms is the set of norms that are evolutionarily stable (ES), within which are the set of best response
(BR) norms.

From this norm classification, we can situate correlated equilbria: a pair of norms, n and n′, form the
correlated equilibrium Poo′ and (Pa|o,P

′
a|o) if n and n′ are empirically validatable with respect to

one another, i.e. eq. (5), given the matrix representation of norms. Under a natural selection process,
the observed set of correlated equilibria are those arising from evolutionarily stable norms, i.e. norms
that are stable to perturbations in norm space. Morsky and Akçay [2019] prove that such norms
must be consistent, i.e. their prescriptions are best-responses to the opponent-environment system
formed by thier descriptions, and vice versa. Next, we give an example application of this social
norm theory for the game of chicken and then go on to describe an natural selection dynamics among
game-playing agents by which a norm implementing a correlated equilibrium emerges.

Theory application to the canonical coordination game family: the game of chicken

The game of chicken constraints on R and the linearity of our objective (expectations of R), as well
as the normalization and symmetry constraints on Poo′ allow for a complete characterization of this
canonical system.

By the linearity of the operations (taking expectations) that we will perform on R, P and S can be
set without loss of generality as the reference and unit of reward, respectively, so that P = 0 and
S = 1. We can also parametrize temptation by the excess reward L = T −B > 0 of exploitation T
above mutual cooperation B (the strength of greed; c.f. social dilemma condition 4b and Leibo et al.
[2017]) so that the reward matrix is in general

R(B,L) =

a\a′ stop go[ ]
stop B 1
go B + L 0

(6)

with condition 3 implying, L < B − 1, so that the exploitation excess can not overwhelm mutual
cooperation7. We call L the coordination challenge level since it sets the strength of temptation
relative to that of coordination.

Under the signal-following norm, Poo′ serves as the joint action distribution. As a result, we can
parametrize it in a way that highlights performance. Its symmetry and the normalization constraint
leave it with two degrees of freedom. Given the payoff matrix eq. (6), the action pair, (stop, stop),
gives the highest average reward (by construction, c.f. social dilemma condition 3). This is the
case where the two players fully coordinate. We thus define the coordination potential, b and set
p ∝ b > 0. Realizing this potential is limited by exploitation, which we parametrize using g = p ,

7The prisoner’s dilemma family can be obtained from this matrix by swapping the elements in the second
column and for the condition L < B.
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Figure 2: Phase diagram for the rationality of the signal-following norm over the game family of
the game of chicken. Left: mutual information between environmental signals o and o′ as a function
the parametrization of Poo′ , (b, g). Center: phase diagram for the general case. The norm is not
always rational: when is observed, it is better to go when b > (1 + 2gL)/(1 + 2L) (red). Similarly,
when is observed, it better to stop when b > 1 − 2g/L (green). Positivity of p requires b > g
(gray). When L > B − 1 (blue), pure competition (to exploit and be exploited) is more advantageous
(c.f. social dilemma condition 3). Right: Case of g = 0 and B = 3 with average reward relative to
that of the mixed Nash equilibrium (colorbar). The x-axis, L, sets the hardness of the coordination
problem and the y-axis, b, sets the coordination potential. Harder coordination problems limit the
coordination available. A standard version of the game of chicken (L = 0.5, b = 1/3) is shown by
the black dot.

and set p ∝ −g. This gives the parametrization

Poo′(b, g) =

o\o′ [ ]
b− g (1− b)/2

(1− b)/2 g
(7)

with b > g by the positivity of p . The goal then is to maximize b− g: getting g as small as possible,
and b as large as possible. Since b < 1 leaks probability into the dislike pairs, coordination can be
made rational even when eliminating the undesirable (go, go) action pair with g = 0 (we analyze this
desirable case below). The pairwise correlation is 2b − 1 and the mutual information (see fig. 2a)
achieves the maximum of 1 bit at the pure symmetric (b, g) = (1, 1/2) and pure antisymmetric
(b, g) = (0, 0) configurations.

Using the above parametrizations of R and Poo′ , the task-environment can be completely character-
ized within the plane of coordination potential b and coordination challenge level L. Here, we give
an example for the signal-following norm (i.e stop when ; go when ). We first derive the norm’s
rationality conditions. There is a best-response (BR) condition for each of the signal values:

received
signal probability

posterior of
opp.’s signal

pi|j = p(o′ = i|o = j)

reward for
playing action a when opp.

follows norm (a′ ∼ o′)

rational:
o is BR

p(o = )
= g + (1− b)/2

p | = (1−b)/2
g+(1−b)/2

stop: Bp | + 1(1− p | )
go: (B + L)p | + 0(1− p | )

b < 1− 2g
L

p(o = )
= b− g + (1− b)/2

p | = b−g
b−g+(1−b)/2

stop: Bp | + 1(1− p | )
go: (B + L)p | + 0(1− p | )

b < 1+2gL
1+2L

These two rationality constraints combine with one of the positivity constraints (b > g) and the social
dilemma condition 3 (L < B − 1) to define the valid region in which the signal-following norm is
rational (see fig. 2b). The most important remark about this phase diagram can be made using the
more simple case of g = 0, i.e. the case where the signal statistics allow for completely avoiding the
punishment from mutual exploitation. We also fix B = 3, consistent with a widely used instance of
the game of chicken (for which L = 0.5; see black dot in fig. 2c). The system is now parametrized
by the pair (b, L). In this plane (fig. 2c), we expect that the maximum signal potential that can be
realized while still ensuring it is rational to follow the signal-following norm should decrease as
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challenge level increases, and this is indeed the case. For a given challenge level, the highest average
reward is obtained at this maximum rational signal potential (where the reward for stop and go are
equal when the red signal is observed). We have represented reward relative to that of the best
(mixed) Nash strategy and see that the correlated equilibrium performs better (values greater than
1) over a large area of the parameter space (up to around 1.8 times better for L at its maximum of
B − 1 = 2).

Note that since |A| = |O| = 2, there are 16 norms (4 possible prescriptions by 4 possible descriptions).
Of the 16 norms in the game of chicken and in this case that g = 0 and B = 3, the 4 norms with
prescriptions that always stop are null, leaving 12 rational norms (3 unique prescriptions by 4
unique descriptions). Alongside the default strategy, P0, of the mixed-strategy Nash equilibrium
(pstop = 1/(1 + L) with average reward (B + L)/(L+ 1)), are the 3 unique prescriptions,

P1 =

[
0 1
1 0

]
, P2 =

[
1 0
0 1

]
, and P3 =

[
0 0
1 1

]
. (8)

The identity policy, P2, is the prescription and description of the signal-following norm: just do
what the signal says. P1 is the anti-signal norm: do the opposite of what the signal says. Finally, P3

prescribes that players always go. For prescription indexing n = 0, 1, 2, 3, this gives for arbitrary
pair event distribution p (represented by Poo′ ) the following prescription payoff matrix

Γ(b, L) =


L+3
L+1

b−(b−1)(L(L+3)+3)+1
2(L+1)

−b+(b+1)(L(L+3)+3)+1
2(L+1)

1
L+1

L+3
L+1 − b

2 − (L+3)(b−1)
2 + 1

2 b
(
L+ 3

2

)
+ 3

2
1
2 − b

2
L+3
L+1

3
2 − b

2
5b
2 − (L+3)(b−1)

2 + 1
2

b
2 + 1

2
L+3
L+1 − (L+3)(b−1)

2
(L+3)(b+1)

2 0

 (9)

The highest scoring self-play norm (largest diagonal entry) is the signal following norm with reward
b(L − 2) + 3 (the heat map in fig. 2c). This has maximums for fixed L at the boundary of the
rational region where the reward for stop and go are equal when is received. These rewards are
significantly higher than the best Nash strategy. Note that under this signal-following norm, the joint
action distribution p(a, a′) = P2Poo′P2 = Poo′ . A self-consistent interpretation of the correlating
signal distribution is as the joint action distribution of another identical pair of agents or even some
mean field (i.e. population-averaged) pair-wise behaviour. This obviates an external environment to
provide the signal.

Replicator Dynamics of Social Norms

Given Γ as a fitness matrix, replicator dynamics is a candidate fitness-based selection dynamics
among types. Applied to norms, it provides a means by which a norm can establish itself in a
many-agent system 8. It is obtained as the mean-field limit of the coupled birth-death process of
N populations of player types (defined by the prescription of the norm they abide by). The system
is described in this limit a continuous frequency vector x = (x1, . . . , xN ), where xn ∈ [0, 1] for
n ∈ {1, . . . , N} is the frequency of the nth population in the system and the components satisfy the
normalization constraint

∑
n xn = 1. The limiting dynamics is exactly

ẋn

xn
= ∆fn (11)

8We focus on rational imitation by which agents meet in pairs, compare the payoffs for each’s norm, and
adopt the norm with the higher payoff. A slightly more general setting to imitation that is more in the spirit
of the epistemic perspective outlined in the introduction is socalled pairwise comparison in which the norm is
adopted with some posterior probability given a noisy observation of the other player’s reward. A posterior
probability for unimodal noise model can be well-approximated by the logistic function,

p(∆f) =
1

1 + e−β∆f
(10)

where ∆f = |Γnn′ − Γn′n| > 0 is the fitness difference of the two player’s norms and β is the strength
of selection. This posterior results exactly from a linear log-odds model with equal prior probabilities and
coefficient parameter β set as the strength of selection (e.g. noise strength in the observation model). This
results in a replicator dynamics ẋn/xn = tanh(β∆fn) which reduces to eq. (11) in the weak selection limit
(i.e. β∆fn typically much less than 1) for which β sets the speed of the dynamics.
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Figure 3: Replicator dynamics (eq. (12)) for norms in the game of chicken. Top: State space of
norm frequencies in which 30 trajectories (red) are shown starting at frequencies sampled uniformily
in the volume (cross markers) (left: b = 1/2 , center: b = 1/3, right: b = 1/5). The trajectories end
on the signal-following norm (black circle). Rational norms are denoted by the defining pair of o : a.
Bottom: Eigenvalue spectra of the Jacobians at four single-norm fixed points over (b, L). Dotted
lines denote stability transitions (λmax = 0).

with fitness deviations ∆fn = fn(x) − f̄(x) from the mean fitness f̄(x) =
∑

n xnfn(x).9 The
fitness of a type when playing against the other type (including itself) is given by the expected payoff
from playing in the system fn(x) = (Γx)n, where Γ is the fitness matrix. Direct evaluation shows
that this dynamics respects the normalization constraint. Equation (11) can be written in matrix form

ẋ = diag(x)
(
Γx− (x⊤Γx)1

)
, (12)

where the function diag(x) evaluates to a matrix with elements of the vector x on the diagonal and
0 elsewhere and 1 denotes a vector of ones of the same size as x. We have written mean fitness
explicitly, f̄(x) = x⊤Γx.

For the game of chicken example with 4 × 4 norm fitness matrix Γ given above eq. (9), this is a
dynamics on the 3-simplex, i.e. the tetrahedron. Three qualitatively distinct example parametrizations
of eq. (12) for the optimal signal-following norm are given in fig. 3(top).

Solution Analysis The replicator dynamics represented by eq. (12) has solutions that while compli-
cated are tractable via standard dynamical systems analysis. Fixed points, x∗ are solutions to the
matrix system

Γx = (x⊤Γx)1, (13)

where xn is non-zero. All states at which only a single norm n is present (denoted n̂, i.e. n̂i = δin)
are fixed points10. Given the flow map g(x) (the righthand side eq. (12)), stable fixed points are those
fixed points x∗ for which the maximum eigenvalue of the Jacobian of g(x), i.e. the N ×N matrix
of partial derivatives denoted by ∇xg(x), evaluated at x∗ is non-positive. We derive a convenient

9This dynamics is known as the generalized Lotka-Volterra equation in ecology, and is a continuous time
version of the Price equation studied in the theory of biological evolution.

10One can also show there are no interior equilibria
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matrix form here starting from the product rule,

(∇xg(x))ij =
∂gi(x)

∂xj
(14)

= δij((Γx)j − x⊤Γx) + xi

Γij −

2Γjjxj +
∑
i′ ̸=j

(Γji′ + Γi′j)xi′

 (15)

= δij((Γx)j − x⊤Γx) + xi

(
Γij − ((Γ⊤ + Γ)x)j

)
(16)

= δij((Γx)j − x⊤Γx) + xiΓij − xi(Γ
⊤x)j − xi(Γx)j (17)

∇xg(x) = diag(Γx− (x⊤Γx)1) + diag(x)Γ− x(Γ⊤x)⊤ − x(Γx)⊤ (18)

= diag(Γx− (x⊤Γx)1) + (diag(x)− xx⊤)Γ− xx⊤Γ⊤ (19)
where δij = 1 if i = j and 0 otherwise. Evaluating eq. (19) for single norm states n̂, the second term
vanishes. Evaluating the first and third term, we obtain the Jacobian

(∇xg(n̂))ij = (Γin − Γnn)δij − Γjnδin (20)

∇xg(n̂) = diag(Γ·n − Γnn1)− n̂(Γ·n)
⊤ (21)

This sparse matrix is composed of diagonal component Γin − Γnn and an nth row component
−Γjn. Given Γ, the set of eigenvalues of the single state Jacobian matrix eq. (21) can be computed
numerically.

For the game of chicken example (Γ given by eq. (9)), the result in the (b, L) plane for the 4 single
strategy states is shown in fig. 3(bottom). The always go norm is always unstable. The mixed Nash
strategy is always stable (and relatively strongly so), but its attractor basin extends over a negligibly
small fraction of the state space (frequency perturbations of magnitude 10−3 were sufficient to knock
the system out of that equilibrium). Across a path in (b, L) on which the coordination potential is
lowered, the system transitions from being the attractor basin of the signal-following norm taking
up the vast majority of the state space (fig. 3top,left) to a more balanced multistability in which the
attractor basin of the anti-signal following norm also takes up a significant fraction of the state space
volume (fig. 3top,right). Note that at the critical value of b at which the anti-signal following norm
becomes stable, a significant state space volume attracts to a population mixture of that norm and the
mixed Nash strategy (fig. 3top,middle).

Discussion

We presented a detailed account of how social norms can emerge via the use of correlated equilibria.
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Appendix

Observing the agent population to close the loop

We detailed an evolutionary dynamics of social norms for fixed, given statistics of the signal over a
defined signal space that is used to correlate behaviours in each norm. Here, motivated by the large
amounts of social information in modern human experience, we instead consider the natural case that
signal statistics are in fact evolving according to some dynamics derived from partial observations of
the population-level behaviour itself. This self-referential choice obviates the need for an external
environment to provide correlated signals by leveraging the correlations inherent in the joint action of
the many-agent system.

Consider a partially observable N -agent Markov game (N even) in which agents are paired according
to a (possibly stochastic) pairing P at each time step to play a 2-player game and where the current
state is the joint action a = (a1, . . . , aN ) from the previous time step. One simple type of partial
observation is the pair of actions from a game from the last round.11 Whether or not pairs of agents
abide by their subscribed norm however depends on whether it is rational to do so, otherwise they
play (in our setting) the optimal Nash equilibrium. We assume a similar evolutionary dynamics that
drives the frequencies of norm and signal pairs used in a population towards those that provide high
average payoff, thus allowing the emergence of a correlated equilibria in the same way as in the
previous section. The payoff matrix Γ now depends on these changing observation statistics

Γnn′(t) = tr(RP
(nn′)
aa′ (t)) (22)

where

P
(nn′)
aa′ (t) = P (n′)δP

(nn′)
oo′ (t)(P (n)δ)⊤ (23)

is the joint action distributions for pairings of agents with norm n and n′, where P (n)δ is the
conditional best-response strategy

P (n)δ = δnn′P (n) + (1− δnn′)diag(pNash) (24)

where δnn′ = 1 if the norm (P (n),D(n)) is rational given n′ and P
(nn′)
oo′ (t) and 0 otherwise. P (n′)δ

is defined similarly. Finally, observations are simply empirical frequencies of actions played in the pre-
vious round of games between the two types of players, P (nn′)

oo′ (t) = P̂
(nn′)
aa′ (t−dt), where the latter

is a finite-size estimator, e.g. for |A| = 2, P̂ (nn′)
aa′ (t) = 1

Nnn′

∑
(i,j)∈Pnn′

[
(1−ai)(1−aj) (1−ai)aj

ai(1−aj) aiaj

]
,

where we use the action representation 0 ∼ stop and 1 ∼ go and Pnn′ ⊂ P is the subset of the
pairings made for games in time step, t, from players of the two types, and Nnn′ = |Pnn′ | is
the number of these pairings. When Nnn′ is large (so that finite-size fluctuations are negligible),
P̂

(nn′)
aa′ (t) → P

(nn′)
aa′ (t). By construction then, the single norm state of the signal-following norm is

stable with respect to this closed-loop multi-agent dynamics.

Adding the assumption of partisan interactions leads to partisan sorting

Polarization in existing models on the effects of social media on opinion dynamics is driven by
an absorbing dynamics that homogenizes opinions within groups. These models achieve differing
opinions across groups with high probability by the low probability under uniform sampling of many
opinions that different groups land on the same opinion. This mechanism is unrealistic in a few ways:
the group opinions are uncorrelated with unrealistic parameter dependence, e.g. the fewer opinions
the less polarization. A more compelling hypothesis not accounted for in these models is that the
in-group homogenized opinions are anti-correlated across groups. Here, we propose to induce this
anti-correlation as a consequence of a correlated equilibria that choreographs conflict.

Consider the following setting that implements the idea that assumed partisanship leads to partisan
sorting. Each player assumes there are two agent types and know which type with which it identifies
more. Players then perceive reward functions that differ for like and unlike pair interactions with

11An alternative choice is that agents observe noisy versions of the population-averaged policy (the pair
actions over all games played in the previous time step).
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other agents, R =
[

B 2ξ−1
B+L 0

]
, where ξ = 1 for opponents of the same type (with whom the player

then plays a game of chicken) and ξ = 0 for opponents of the other type (with whom the player then
plays a game of stag hunt so that being exploited is now more costly than mutually exploiting one
another). The optimal player strategy thus depends on the opponent’s type, ξ, which the player strives
to infer in rational pursuit of higher reward. The basis of this inference (the computation leading to the
estimate ξ̂) lies in the inferred similarity of opinions with the opponent from partial observations of
their opinions. We implement this by augmenting each player with a private belief space (represented
relative to the population-averaged beliefs) as a vector d ∈ RD (D could be interpreted as the number
of topics). Opinion similarity is defined by an opinion similarity function, S(d,d′). Here, we assume
that in pursuit of inferring similarity players binarize their opinions relative to the average and use
the normalized overlap S = S(d,d′) = 1

DΘ(d)⊤Θ(d′) ∈ [0, 1] to define similarity where Θ is
applied element-wise (Θ(x) = 1 if x > 0, 0 otherwise) and set ξ = ξ(S) = Θ(S − 1/2). An
opponent’s opinion d′ is partially observable, with single components revealed in single games. Prior
assumptions about the distributions of opinions can strongly influence the inference of ξ. Under the
prior assumption of non-overlapping variability of two types, ξ̂ = 0 upon the observation of any
deviating opinion component. Alternatively, the maximally uninformative prior leads to a posterior
with significant residual uncertainty on S from single observations that provide only a component of
the opinion vector.

The different reward matrix for each pairing type drives the selection of a pair of action pair dis-
tributions via the joint-action derived signal statistics, P+

oo′ and P−
oo′ . We propose that the same

dynamics that leads to a correlated equilibria for the policies conditioned on playing opponents from
the same population, will lead to a suboptimal equilibria when conditioned on playing against those
of the different population that is characterized by choreographed conflict rather than cooperation.
We also aim to show that the dependence of R on the population label can in fact be based solely
on the player’s estimate and thus no ground truth, type-specific populations need exist. The latter
emphasizes that it is the interaction dynamics out of which the conflicted populations emerge. This
is in line with recent proposals for partisan sorting via conflict alignment [Törnberg, 2022]. Under
which conditions the set of local assignments are mutually consistent is then a focal question when
aiming to understand the stationary behaviour of the system.
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