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Cortical circuits operate in an inhibition-dominated regime of spiking activity. Recently, it was
found that spiking circuit models in this regime can—despite disordered connectivity and asyn-
chronous, irregular activity—exhibit a locally stable dynamics that may be used for neural compu-
tation. The lack of existing mathematical tools has precluded analytical insight into this phase. Here
we present analytical methods tailored to the granularity of spike-based interactions for analyzing
attractor geometry in high-dimensional spiking dynamics. We apply them to reveal the properties
of the complex geometry of trajectories of population spiking activity in a canonical model of locally
stable spiking dynamics. We find that attractor basin boundaries are the pre-images of spike-time
collision events involving connected neurons. These spike-based instabilities control the divergence
rate of neighboring basins, and have no equivalent in rate-based models. They are located ac-
cording to the disordered connectivity at a random subset of edges in a hypercube representation
of the phase space. Backward-iterating these edges using the stable dynamics induces a partition
refinement on this space that converges to the attractor basins. We formulate a statistical theory
of the locations of such events relative to attracting trajectories via a tractable representation of
local trajectory ensembles. Averaging over the disorder, we derive the basin diameter distribution,
whose characteristic scale emerges from the relative strengths of the stabilizing inhibitory coupling
and destabilizing spike interactions. Our study provides an approach to analytically dissect how
connectivity, coupling strength, and single neuron dynamics shape the phase space geometry in the
locally stable regime of spiking neural circuit dynamics.

Dynamics is determined by the geometry of trajecto-
ries in its associated phase space. In high-dimensional
models of disordered neural circuits, for example, trajec-
tories from phases of locally stable dynamics are struc-
tured around a large set of coexisting attractors dispersed
throughout the phase space. Using a highly idealized
model, Hopfield demonstrated how to construct a version
of this neural dynamics that implements a high-capacity,
error-correcting code [1], in which corrupted versions of
the stable states are corrected by the locally stable dy-
namics, endowing it with robustness to noise. Could such
a model be at work in the brain? Since many model
details can be suppressed when describing collective be-
haviour, system idealization need not compromise the ve-
racity of the description. However, models aiming to cap-
ture collective dynamics should qualitatively capture the
activity statistics of the regime under study and, since
collective states of many-body systems typically depend
strongly on the form of the interactions between the bod-
ies, do so using a faithful representation of the type of
interaction. In this regard, Hopfield-like constructions
relying on local stability in models more faithful to the
underlying neurobiology have proved elusive.

While a continuously interacting rate dynamics ad-
mits powerful statistical methods through which results

like Hopfield’s have been well understood [2–4], neurons
rather interact at a discrete set of spike times [5]. De-
spite proving computationally powerful [6], the granular
character of spikes makes many of these methods inad-
missible, complicating the analysis of spiking dynamics.
Further complication arises since spiking dynamics devi-
ates from the expectations of smooth dynamical systems
theory. As a salient example, we consider asynchronous,
irregular spiking activity, that is reminiscent of chaotic
dynamics, but surprisingly does not preclude local sta-
bility. Indeed, a locally stable phase of spiking dynamics
has been found in a variety of models [7–10] operating
in the inhibition-dominated regime exhibited by cortical
circuit activity [11, 12], achievable with O(1/

√
K) inter-

action strength. In our current state of knowledge, weak
(O(1/K)) and strong (O(1)) interaction strengths give
only the more conventional pairing of stable dynamics
with temporally regular and vanishing/exploding spiking
activity, respectively, and are thus unsuitable for model-
ing cortex. Moreover and in contrast to rate-based encod-
ing schemes employing the local stability of fixed points
or limit cycles, cortical circuits rather encode inputs us-
ing time-varying, intrinsically-generated activity. While
chaos produces such activity and emerges rather generi-
cally with sufficient sampling of a disordered connectiv-
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ity in both rate and spiking models, its error-amplifying
nature appears to negate the kind of error-correcting
schemes required for robust encoding.

Spiking dynamics in the locally stable phase, by con-
trast, can partition the phase space into a large set of
tube-shaped basins of attraction, termed flux tubes, each
enclosing a single attracting trajectory [13, 14], and to-
gether in principle providing an error-correcting encod-
ing useful for neural computation. Whether described by
the state sequence at spike times or the index-sequence
of spiking neurons, flux tube attractors thus reflect the
activity statistics of cortical activity, and do so using a
more faithful representation of the interaction.

Reference [14] significantly advanced our understand-
ing of the geometry of this locally stable phase, with nu-
merical scaling results for the divergence rate and av-
erage diameter of flux tube attractor basins. This ad-
vance stopped short, however, of providing a picture of
the phase space geometry associated with these attrac-
tors, the topic of the present study, for three important
reasons. First, the analysis of Ref.[14] only consider a sin-
gle time slice of phase space around these attractors. The
time-varying nature of the attractors strongly suggests a
time-varying basin diameter. Second, the analysis of Ref.
[14] never precisely locate the attractor boundaries, and
so never access the discrete nature of the boundary, leav-
ing the putative instability responsible for the boundary
unexplained. These two missing pieces are not only fun-
damental to the phenomenology, but likely also provide
important insights into the overall attractor geometry.
Without them, Ref. [14] employed a numerical approach
that, as a third gap, left the scaling dependencies un-
explained (the experiments also omitted the dependency
on the strength of neural interactions). Thus, Ref. [14]
provided limited mechanistic insight into the phenom-
ena, e.g. into how the model ingredients contribute and
why. Since the constraints that dynamics places on com-
putation and the capacity of any putative neural code
are ultimately controlled by these dependencies, a the-
ory is needed in which they are jointly derived and can
be understood in terms more naturally related to the dy-
namics.

Here, we provide these missing pieces of the phe-
nomenology and use them to build a theory with which
we provide a more complete understanding of the phase
space geometry of flux tubes in the networks consid-
ered by [14]. We first present a simulation study of flux
tubes, uncovering the temporal variation of the attractor
basins. Representing the activity using the spike interval
sequence, we find that the attractor boundary is formed
by pre-images of destabilizing events realized when an
input and output spike collide. The properties of these
collision events allow us to derive the rate of the mutual
divergence of neighboring tubes. We develop a disorder-
averaging scheme for trajectory ensembles and apply it
to the boundary trajectories to obtain the distribution of

flux tube diameters. Assembling these results, we provide
a construction of the phase space organization based on
a dynamics-induced partition refinement seeded by the
disordered connectivity. Finally, we discuss the results,
their generality, and applications of this ensemble aver-
aging method. The proposed approach to revealing at-
tractor structure from spiking activity informs how cou-
pling strength, connectivity, single neuron dynamics and
population activity control a circuit’s sensitivity to per-
turbations. This is knowledge that can guide the bur-
geoning experimental approaches, such as bidirectional
neural implants, that investigate neural computation by
perturbing neural dynamics.

MODEL DEFINITION

N neurons are connected by an Erdős-Rényi graph
with adjacency matrix A = (Amn). Amn = 1 denotes a
connection from neuron n tom, realized with probability,
p. The neurons’ membrane potentials, Vn ∈ (−∞, Vthr],
are governed by LIF dynamics,

τ V̇n(t) = −Vn(t) +RIn (t) , (1)

for n ∈ {1, . . . , N} (ẋ is the time derivative of x). Here,
τ = (RC)−1 is the membrane time constant for a mem-
brane with capacitance, C, and resistance, R. In (t) is the
synaptic current received by neuron n; when Vn reaches
a threshold, Vthr, neuron n ‘spikes’, and Vn is reset to
Vres. Without loss of generality and for convenience, the
voltage has been non-dimensionalized so that the reset
is Vres = −1 and Vthr = 0, which zeros the offset of
spike rate as a function of external current. At the spike
time, ts, the spiking neuron, ns, delivers a current pulse
of strength J to its O(K := pN) postsynaptic neurons,
{m|Amns = 1}, with spike index, s. The total synaptic
current is

In (t) = Iext + τJ
∑
s

Annsδ(t− ts) , (2)

where Iext > 0 is a constant external current and J <

0 is the recurrent coupling strength. An O
(

1/
√
K
)
-

scaling of J maintains finite current fluctuations at large
K and implies that the external drive is balanced by the
recurrent input. As a consequence, firing in this network
is robustly asynchronous and irregular [38–41]. Setting
Iext =

√
KI0, with I0 > 0, and J = −J0/

√
K with J0 >

0, the corresponding stationary mean-field equation for
the population-averaged firing rate, ν̄, reflects a balance
of the external drive and recurrent inhibition [14]

ν̄τ =
I0
J0

+O
(

1√
K

)
. (3)

It is convenient to map the voltage dynamics to a
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Figure 1. Finite-size perturbation instability and phase space partitioning in spiking networks. The three panels display the
same two slightly subcritical and supercritical perturbations of strength ε∗ ± δ, δ & 0, respectively, applied once at t = 0 and
in a random direction away from an attracting trajectory. (a) Temporal responses of the system. Top: The corresponding
distance time series, Dt(ε), between the perturbed and unperturbed trajectories (gray: sub-critical, orange: super-critical).
Arrows in all three panels indicate the respective perturbation. The divergence of Dt(ε∗ + δ) begins at t∗ ≈ 3 ms, and saturates
at the average distance between randomly chosen trajectories, D̄ (dashed line) [14], while Dt(ε∗− δ) only decays exponentially.
Middle: The spike times as vertical ticks of 50 randomly labeled neurons from the network. The unperturbed sequence (ε = 0)
is shown in black. Bottom: The subthreshold voltage time course of an example neuron. The spike sequence and membrane
potentials of the sub and supercritical trajectories decorrelate after t∗. (b) A 2D cross-section (δφ1, δφ2) of the pseudo phase
representation of the phase space, orthogonal to and centered on the unperturbed trajectory from (a) at t = 0 (see also [14]).
The black dot at the origin indicates the latter, whose attractor basin is colored gray. The other colors distinguish basins in the
local neighborhood. The two perturbed trajectories from (a) were initiated from (δφ1, δφ2) = (0, ε∗ ± δ), respectively (shown
as gray and orange dots, respectively, in the inset, in (a,Top and Bottom), and in (c)). (c) Schematic provided by Ref. [14]
of phase space caricature of two neighboring flux tubes with subcritical perturbations decaying on the order of the membrane
time constant, τ , and typical basin diameter, ε∗. The pseudo Lyapunov exponent, λp, is the rate at which neighboring tubes
separate from each other (parameters: N = 200, K = 50, ν̄ = 10 Hz, τ = 10 ms, J0 = 1).

pseudo phase representation [14, 15] with

φn(t) =
τ

Tfree
ln

[
Iext − Vres

Iext − Vn(t)

]
, (4)

where Tfree is the oscillation period of a neuron driven
only by Iext. φn (t) evolves linearly in time,

φ̇n (t) = T−1
free , (5)

between spike events, i.e. t /∈ {ts}, and undergoes shifts
given by the phase response curve, Z(φ), across input
spike times. Its argument φ is the state at spike reception.
In the large-K limit, Tfree and Z (φ) simplify to

Tfree ≈
τ

Iext
= (
√
KJ0ν̄)−1 , (6)

Z (φ) ≈ −dφ+ const.

with d : =
|J |
Iext

= (Kν̄τ)−1 , (7)

respectively. Event-based simulations of this model are
described in Appendix A. See Ref. [14] for further details.
They employ the phase representation for its computa-
tional efficiency and for viewing a cross section of the
phase space. We will rely on its tractability to describe
the phase space geometry.

RESULTS

A. Phase-space contraction and partitioning

The circuit models exposed above have proved use-
ful for understanding many aspects of the inhibition-
dominated regime of cortical network activity. Despite
having no recurrent excitatory connections, they serve as
a limiting class of models for the fast action potential on-
set and pulse-coupling regime that also exhibits the mean
activity statistics characteristic of the asynchronous, ir-
regular activity of canonical excitatory-inhibitory cir-
cuits. It was in these models that a locally stable dy-
namics was first observed [15, 16].

The character of the resulting phase space partitioning
is complicated here by the nonlinear time evolution of the
network state voltages. In the phase representation ~φ(t)
(Eq. (4)) by contrast, the state evolves linearly in the
unit-hypercube and parallel to its main diagonal. States
evolved across a face of the cube are mapped to a differ-
ent location in the opposite face. We exploit this repre-
sentation to define measures of phase space contraction
and partitioning, two important features of the dynamics
that contribute to the evolution of nearby trajectories.

With vanishing coupling strength between neurons,
J = 0, the dynamics reduces to ~̇φ(t) = const. and so
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preserves phase space volume. For the recurrent dynam-
ics emerging at finite J , however, the phase space volume
is contracted in the O(K) dimensional subspace spanned
by the post-synaptic neurons at each spike as a result of
the derivative of the phase response curve being nega-
tive, d

dtZ(φ) ≈ −d (Eq. (7)). Thus, trajectories from a
small ball of initial conditions observed at the same fu-
ture spike form a ball of states that contracts by a factor
1−d along each of these K dimensions. The volume thus
contracts by (1− d)K ≈ eλK per spike, for K � 1, with
exponential rate,

λK ≈ −Kd < 0 . (8)

λK captures how the model ingredients involved in the
inhibitory interactions contribute to this dissipative dy-
namics (mean Lyapunov exponent, λmean < 0 [14]). The
latter appears to be the dominant stabilizing contribu-
tion, and strong enough to stabilize the dynamics (max-
imum Lyapunov exponent,λmax < 0 [16]).

Larger phase space volumes, however, are not uni-
formly contracted but were previously found in simula-
tions [13, 14] to be torn apart, with the pieces individ-
ually contracted but mutually dispersed across the en-
tire traversed phase space volume. The elementary phe-
nomenon in a single direction is illustrated in Fig. 1.
To study the sharp onset of this tearing, we capture its
discrete nature by introducing the critical perturbation
strength, ε∗: the precise extent out from a given state ~φ0

on the attracting trajectory, ~φt, and in a given orthog-
onal perturbation direction, ~ξ, within which trajectories
contract over time,

ε∗(~φ0, ~ξ) := sup
{
ε
∣∣∣ lim
t→∞

Dt (ε) = 0
}
. (9)

Here,Dt (ε) is the distance between perturbed and unper-
turbed trajectories using any conventional metric, since
this definition only concerns the finiteness of the limiting
behavior (we use the 1-norm to allow interpretation of the
values relative to the distance between reset and thresh-
old; see Appendix B for details). Dt initially decays ex-
ponentially. For ε = ε∗ − δ (δ > 0), this decay character-
izes the long-time behavior. For ε = ε∗ + δ, in contrast,
there exists a divergence event time, t∗ = t∗(~φ0, ~ξ) > 0,
at which a sustained divergence in Dt begins (see Fig.
1a). In later sections we will show that this holds for
δ → 0, and that this discreteness of ε∗ arises from a dis-
crete destabilizing location in the phase space traversed
by the trajectory at t∗.

Since we will build on the picture established by [14]
(Fig. 1c), we present and comment on it here. Since
trajectories in the phase representation only change their
relative positions at the boundary of the phase space, the
geometry is more clearly reflected in the Poincare sec-
tion obtained by projecting the hypercube phase space
into the N − 1-dimensional hyperplane orthogonal to its

main diagonal (see Ref. [14]). The system’s state be-
tween spikes becomes a point in the hyperplane, and the
sequence of such points indexed by spikes corresponds to
the trajectory. A small portion of a 2D projection of this
hyperplane around ~φ0 (Fig. 1b) reveals that the locations
of these critical perturbations form lines that partition
this plane into polygon-shaped basin boundaries formed
by their intersections. The putative N -dimensional vol-
umes serving as attractor basins were termed flux tubes
(Fig. 1c) [14]. The smoothness of the caricature in Fig.
1c is misleading in two ways, however. First, the diver-
gence of supercritically perturbed trajectories only begins
at t∗. Initially, these attract alongside the subcritically
perturbed trajectories. Second, as we will see, the flux
tube boundaries are not uniformly smooth. We expect
they are formed by sequences of random, but temporally
correlated (N − 1)-dimensional polytopes, each enclos-
ing a state from the state sequence trajectory in the
hyperplane. Before developing a theory for this phase
space organization, we analyze two main features of its
geometry: the punctuated exponential decay of a tube’s
cross-sectional volume and the exponential separation of
neighboring tubes.

B. Punctuated tube geometry

By following a simulated trajectory, we find that the
cross-sectional volume enclosed by the local flux tube ex-
hibits exponential decay. This decay, expected from the
typical phase space volume contraction (see Eq. (8)),
must be opposed by some counteracting element to be
consistent with the numerical observation in [14] of a fi-
nite average size. Indeed, our simulation shows that the
volume decay is punctuated by events at which the vol-
ume blows up. Figure 2a displays the spiking activity
produced by a typical trajectory, ~φt. The temporal evo-
lution of the neighborhood around ~φt in the hyperplane
is more clearly represented in a unfolded representation
in which copies of the space are aligned such that the
trajectory passes through them continuously. For visu-
alization, we show only a fixed, 2D projection of the hy-
perplane around ~φt (Fig. 2b and SI Movie; see Appendix
D for construction details). The boundary of the attrac-
tor basin surrounding ~φt in this 2D projection consists
of lines which remain fixed between spike times. Across
spike times, new lines appear and existing lines disap-
pear. At irregular intervals breaking up time windows
of exponential contraction, large abrupt blowup events
take the boundary away from the center trajectory. The
area enclosed by the boundary increases sharply there
as a result (Fig. 2c). It is important to note that these
blowup events do not mean that the evolving phase space
volume from an ensemble of nearby trajectories would ex-
pand. Such volumes only contract and converge to the
same asymptotic trajectory. The basin of attraction it-

file:http://www.phys.ens.fr/~mptouzel/pdf/PuelmaTouzel_Partioning_suppvideo.avi
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Figure 2. The basin boundary contracts towards and can
blowup away from the stable center trajectory. (a) Spike
times from all neurons of the simulated trajectory, ~φt, in a
150 ms window. (b) 2+1D unfolded phase space volume,
(δφ1, δφ2, t), centered around ~φt located at (0, 0, t) (black line)
and extended in two fixed, random directions, ~δφ1 and ~δφ2.
The center tube is filled gray in this volume, and the two
cross-sections, (δφ1, δφ2, 0) and (δφ1, δφ2, 150), are shown.
(c) Cross-sectional area of the center tube from (b) versus
time. The area decays exponentially but can undergo abrupt
expansions at blow-up times, e.g. at spikes s1 and s2 (note the
logarithmic scale on the ordinate). (d) The absolute time of
the next divergence event, t∗ (see Fig. 1a, top), versus time,
for perturbations along ~δφ1. Note the step increase coincident
with the blowup events seen in (b,c) (vertical, dashed lines).
(Same parameters as Fig. 1.)

self, however, does not exclusively contract with time,
but with these blowup events maintains a typical size on
average.

The conspicuous blowup events typically coincide with
a divergence event time, t∗ (Fig. 1a). Two such co-
incidences are visible in Fig. 2c,d. This suggests the
hypothesis that there exist destabilizing locations of the
phase space that underlie both blowup and divergence
events. How would such locations give rise to the ob-
served time variation of the boundary? Due to the expo-
nential expansion of the backward dynamics, the set of
their pre-images naturally trace out the observed expo-
nential shape. With sufficient backward iterations, how-
ever, another destabilizing event closer to the trajectory
is passed and becomes the event determining the bound-

ary. Thus, we conclude that a local basin’s extent in a
direction, at a given time, and out from the attracting
trajectory is determined by a pre-image of a divergence
event at a location in the phase space nearby the trajec-
tory at a future time.

C. Decorrelating spike collision events

While our above analysis highlighting the existence of
destabilizing events does not rely on what causes them,
that knowledge is nevertheless important to further un-
derstand the origin and generality of flux tubes. We thus
analyzed a set of divergence events from simulations to
reveal that the collision of a pair of input and output
spikes was responsible (see Appendix E). This occurs
when synaptic input is received around when the voltage
is near the threshold for spiking. Thus, the pair of spikes
involved in a collision event are generated by connected
pairs of neurons. As a phase space location, a collision
event is then the N−2-dimensional ‘hyperedge’ subspace
of the hypercube spanned by the remaining N − 2 neu-
rons and passing through ~φ = ~1. Moreover, we found that
a perturbation-induced collision of a input-output spike
pair generated an abrupt spike time shift in one or both
of these spike times depending on the motif by which
the two neurons connect. The type of voltage dynamics
and coupling interaction conspire to produce this shift,
as described in Appendix F and shown in Fig. 3 for the
backward-connected pair motif ns∗ ← ns′ , where s∗, the
divergence event index, is the spike index of the earlier of
the pair (note that t∗ ≡ ts∗), and s′ > s∗ here labels the
index of the later spike in the pair. The two other mo-
tifs (forward-connected and symmetrical) are discussed
in Appendix F, where we also demonstrate this abrupt
shift in two less idealized neuron models, each exhibit-
ing a smoothness in one of the two limits of fast action
potential onset and fast coupling, respectively, that char-
acterize (non-smooth) pulse-coupled LIF networks.

The spike time shift resulting from the collision is large
enough that with saturating probability, the shifted spike
collides with a spike from a neuron in its pre or post
synaptic subpopulation, depending on the motif (see Ap-
pendix H for the analytical result). An approximately ex-
ponential cascade of collision events follows whose speed
then depends on the average rate of spikes in these sub-
populations of on average K neurons,

ωK = Kν̄ ≡ p/∆t , (10)

where ∆t = (Nν̄)
−1 is the average distance between suc-

cessive spikes.
Thus, the total collision rate is ωK multiplied by the

number of source neurons. For most of the cascade, colli-
sions involve a previously unaffected neuron, so the num-
ber of source neurons roughly increments with each colli-
sion. With collision event times, {tm} (reference time t∗),
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Figure 3. The collision of a input-output spike pair causes
an abrupt change in spike time. (a) A schematic illustration
of the collision event (9) for the backward-connected pair
motif (shown in inset). For this motif, the interval vanishes
as ε→ ε∗ from below. The linearly varying locations of spike
times as a function of perturbation strength, ε, are plotted in
the ε-time plane. The spike times shift continuously for ε < ε∗.
The next input spike time, ts∗+1 (ε∗ − δ), is advanced over
the output spike, ts∗ (ε∗ − δ). A discontinuous jump of size
∆tjump occurs in the spike time of the post-synaptic neuron,
ns∗ (light to dark blue) from ts∗ (ε∗ − δ) to ts′>s∗ (ε∗ + δ),
δ & 0. (b) Schematic illustration of the voltage of the ns∗
neuron versus time for ε∗ ± δ. The inhibitory kick of size
J = −J0/

√
K (not shown to scale) delays the spike time by

an amount ∆tjump ∼ (Kν̄)−1.

the inverse total collision rate gives an estimate for the in-
terval, tm−tm−1, between successive collision events. Us-
ing the approximation 1

m ∼ log(1− 1
m )−1 valid form� 1,

we can then write tm − tm−1 ∼ (ωK)
−1

log(1 − 1
m )−1,

which can be rearranged as m/(m − 1) = eωK(tm−tm−1).
Over many realizations of the cascade, the average num-
ber of collisions, and thus the distance grows exponen-
tially with rate, ωK , providing the origin of the nu-
merical scaling result for the pseudoLyapunov exponent,
λp = Kν̄ [14], and the rate at which adjacent flux tubes
diverge from one another.

Statistical theory of flux tube diameter

We capture the geometry of a flux tube by in-
troducing the flux tube indicator function, 1FT (ε) =

Θ
(
ε∗(~φ0, ~ξ)− ε

)
, evaluated at a network state, ~φ0, on

the attracting trajectory inside a tube, and for a pertur-
bation direction, ~ξ, orthogonal to it. Using the Heaviside
function, Θ(x), 1FT (ε) = 1 for perturbation strengths
remaining in the tube (ε < ε∗), and is 0 otherwise (see
Fig.5a; Eq (9)). The average of 1FT (ε) over ~φ0 and ~ξ,

Ŝ (ε) = 〈1FT (ε)〉ρ(~φ0,~ξ) , (11)

is the survival function: the probability that an ε-sized
perturbation does not lead to a divergence event later
in the perturbed trajectory. Formally, Ŝ (ε) := 1 −

´ ε
0
ρ (ε∗) dε∗, with ρ (ε∗) the transformed density over ε∗.

Ŝ (0) = 1 and decays to 0 as ε→∞. The scale of this de-
cay defines the typical flux tube size. Calculating Ŝ (ε) re-
quires two steps: firstly, establishing a tractable represen-
tation of ε∗(~φ0, ~ξ) and secondly, performing the average
in Eq. (11). Both of these in general pose intricate prob-
lems. However, as we will see next, they substantially
simplify when generic properties of the asynchronous, ir-
regular activity regime are taken into account.

Since the spike collision event underlying ε∗ for each
(~φ0, ~ξ) pair can be identified through a vanishing spike
interval, we represent trajectories using the perturbed
spike interval sequence. The perturbation-induced spike
time deviations, δts (ε) := ts (ε) − ts (0), s = 1, 2, . . . ,
provide this sequence,

∆ts (ε) = ts(ε)− ts−1(ε) = ∆ts (0) + δts (ε)− δts−1 (ε) ,
(12)

here with s ≥ 2. In a linear approximation valid in our
setting where ε̄∗ � 1,

δts (ε) ≈ −Tfree√
N
asε , (13)

where as is a recursively defined, dimensionless suscepti-
bility (see Appendix I).

as :=ξns

s−1∏
j=1

(
1 + dφjs

)Ansnj
+

s−1∑
j=1

Ansnjdφjsaj

 s−1∏
k=j+1

(
1 + dφks

)Ansnk , (14)

depending on the adjacency matrix, A = (Amn), the
perturbation direction ~ξ, and derivatives of the phase re-
sponse curve evaluated at the previous states when input
spikes were received, dφjs := Z ′(φns(tj)). Tfree converts
phase to time (cf. Eq. (5)). With O(1)-mean, random
elements, |~ξ| ∝ O(

√
N), so −Tfree√

N
simply converts the

units into an O(1) spike time deviation. Note from Eqs.
12 and 13 that ∆ts (ε) can have a zero, i.e. a spike time
collision only when ∆as = as − as−1 > 0.

We now focus on collisions of backward-connected
input-output spike pairs. They obey a simple, implicit
definition of ε∗(~φ0, ~ξ), expressed using the perturbed
spike intervals and connectivity alone: the smallest ε for
which ∆ts (ε− δ) → 0 as δ → 0 for any s satisfying
Ans−1ns = 1. Using this definition we can write,

1FT (ε) =

∞∏
s=2

Θ (∆ts(ε))
Ans−1ns , (15)

with ∆ts(ε) = ∆ts − Tfree√
N

∆asε. 1FT and its average,

Ŝ (ε) (Eq. (11)) will depend on the adjacency matrix,
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Figure 4. The survival probability to remain in a flux
tube. (a) Spike-time deviations, δts (ε) (dots), as a func-
tion of perturbation strength up to the positive and neg-
ative critical strength, ε∗− and ε∗+, respectively, for s =
1, . . . , 15 (colors) with their linear approximation (lines) given
by Eq. (13). Inset: δts (ε) as a function of s (shown
for ε = 0.2ε∗±, 0.4ε∗±, 0.6ε∗±, 0.8ε∗±) decays exponentially
at a rate near the maximum and mean Lyapunov expo-
nent, λmax (black line) and λmean (black-dashed line) re-
spectively [14]. (b) The survival probability function S (ε)
from simulations (dots, Eq. (11); bars are standard er-
ror), theory (line, equations (19),(20), and the simplified the-
ory at large K, exp

[
−ε/ε∗

]
(dotted line, Eq. (22)), where

ε∗ =
(√

KNν̄τ/J0

)−1

. (c) S (ε) from simulations (dots) and

exp
[
−ε/ε∗

]
(lines) for J0 = 2n, n = −2,−1, 0, 1, 2. (Same

parameters as Fig. 1 except N = 104, K = 103.)

A = (Amn), of the network realization. Conveniently,
removing this dependence by averaging over the ensemble
of graphs, P (A), simplifies the calculation of the survival
function,

S (ε) =
〈
Ŝ (ε)

〉
P (A)

. (16)

Evaluating the right-hand side of Eq. (16) using the lin-
earized perturbed spike intervals requires knowledge of
the joint probability density of the variables on which
these intervals depend,

ρ
(
{∆as} , {∆ts} ,

{
Ans+1ns

}
,M, ~φ0| ~ξ,A

)
ρ(~ξ) P (A) ,

(17)
where we have chosen the perturbation direction, ~ξ, to
be statistically independent of the initial perturbed state,
~φ0. Taken over a time window of size, T , we hereafter
refer to this density as ρT . Here, the unperturbed spike
pattern is represented by two random variables: M , the
number of spikes in the time interval [0, T ] after the per-
turbation, and {∆ts}, the set of all M − 1 inter-spike
intervals in this window.

We now exploit the properties of the asynchronous,
irregular phase. It is well understood that in the large-
system limit for a sparse graph, 1 � K � N , the cur-
rents driving individual neurons in the network converge
to independent, stationary Gaussian random functions
[17]. For low average firing rates, this implies that the
pattern of network spikes (M, {∆ts}) resembles a Pois-
son process with weak serial correlations and exponential
spike interval distribution [18]. These weak serial corre-
lations are absent in 1FT at short range by the sparsity
(p � 1) of the surviving (Ans+1ns = 1) factors and are
further suppressed at longer range by the irregular activ-
ity and the fact that s 6= s∗ indexed variables contribute
to 1FT only insofar as they determine s∗ via an extremum
condition, not via their actual values. Thus, we neglect
serial index correlations. Moreover, the linearization of
the phase response curve for the weak coupling in this
limit implies that its derivative, and thus the susceptibil-
ities as, are state-independent (see Eq. (7)). Finally, we
neglect the weak dependence between the distribution of
network spike patterns and A = (Amn).

Using the above assumptions (see Appendix J for de-
tails), we have the factorized density

ρT ≈ P (Amn)PT (M)

M∏
s=2

ρ (∆t) 2Θ(∆as)ρ (∆as) ,

(18)
with distribution of an adjacency matrix element,
P (Amn = 1) = p, P (Amn = 0) = 1 − p, count dis-
tribution of spikes in the observation window, PT (M),
and exponential distribution of single inter-spike inter-
vals, ρ (∆t) with scale parameter ∆t (see Fig.J.1). All
dependencies on the distribution of perturbation direc-
tion are now mediated by the susceptibilities, {∆as}. For
any isotropic ρ(~ξ) having finite-variance, we find ρ (∆as)
has zero mean and standard deviation proportional to
exp

[
λK
N s
]
with the average contraction rate per neuron,

λK
N = −KdN = −pd, due to the inhibition (see Eq. (8);
Appendix J). The factor 2Θ(∆as) places support only at
positive values of ∆as as required.
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As ρT factorizes, so does S (ε),

S (ε) = lim
T→∞

〈
M∏
s=1

Ss (ε)

〉
PT (M)

=

∞∏
s=1

Ss (ε) , (19)

where Ss (ε) is the probability that a perturbation of
strength ε does not lead to a collision event involving
the sth spike. With the above simplifications,

Ss(ε) =

〈
Θ

(
∆t− Tfree√

N
∆asε

)Amn〉
ρ(∆t)ρ(∆as)P (Amn)

.

(20)

Evaluating Eq. (20) (see Appendix J for details), we find

S (ε) ≈
∞∏
s=1

(
1− Tfree√

N
ωKe

λK
N sε

)
, (21)

where we have identified the rate of spikes from connected
sub-populations, ωK (Eq. (10)). Employing the loga-
rithm and Tfree√

N
ωKε ∝

√
pε� 1,

S (ε) ≈ exp
[
− ε

ε∗

]
(22)

with

ε∗ =
√
N

∣∣λK
N

∣∣
ωKTfree

=
√
N

Kd/N

KνTfree
=
√
N
|J | /N
ντ

ε∗ =
J0√
KNν̄τ

, (23)

where K and Iext (Eq. (2)) cancel, and we have used
Eqs. (6) and (7). With the survival probability in hand,
the density, ρ (ε∗), is simply obtained as the negative of
its derivative. Equation (22) shows for 1 � K � N
that the basin diameter, ε∗, is exponentially distributed
and so completely determined by its characteristic scale,
ε∗ (Eq. (23)). ε∗ is smaller for larger network size,
higher average in-degree, higher population activity, and
larger membrane time constant, τ . Diameters tend to be
larger, however, for stronger synaptic coupling strength,
J0. This previously unknown dependence of ε∗ is cru-
cial to its scaling with the stabilizing rate, λK and its
interpretation as the ratio of the stabilizing and destabi-
lizing rates. In Fig. 4b, we show quantitative agreement
in simulations between the definition of Ŝ (ε) (Eq. (11)
using the definition of ε∗, Eq. (9)) and its approximate
microstate parametrization (Eqs. (19), (20)). These re-
sults also confirm the exponential form of our reduced
expression (Eqs. (22), (23)) and a scaling dependence
on J0 (Fig. 4c). The latter holds while the system
is in the asynchronous and irregular activity regime of
J ∝ O

(
1/
√
K
)
. The other scalings agree with previous

numerical simulations [14].
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Figure 5. Flux tube boundaries are the pre-images of future
input-output spike collisions. (a) A unfolded phase space
representation of a input-output spike collision. Spikes (ticks)
occur at a rate Nν̄ in the unperturbed trajectory (black line).
For an example spike (red-bordered) from some neuron, the
spikes from connected neurons (red) occur at rate Kν̄. Small
perturbations (gray arrows) lead to trajectories (gray) with
spike time deviations that decay (tick alignment). A larger
perturbation (orange arrow) generates an input-output spike
collision (at s∗) in the subsequent trajectory. The indica-
tor function, 1FT (ε), has support (dark gray) only over the
local tube. (b) Constructing the local flux-tube partition
in the non-unfolded phase space. Left : Input-output spikes
are represented by unstable edges (thick green lines) of the
unit hypercube having ~1 = (1, . . . , 1) (black dot) as an end-
point. An intrinsic partition (thin green lines) is generated by
projecting these edges onto the hyper-plane orthogonal to ~1
(light gray). A given trajectory (numbered sequence of small
dots) and its local neighborhood (within black dashed lines)
is shown. Right : The flux tube partition for this trajectory
at a given spike (here s1) is obtained from back-iterating the
intrinsic partition from all future spikes (dashed lines). (c)
A fully-connected 3-neuron network phase space viewed from
rotated perspectives (from left to right) so that the main di-
agonal aligns perpendicular to the page, showing that a 2D
projection captures the dynamics. All states on the reset
manifold are attracted in time (blue to red) to a unique tra-
jectory (red line), emitting spikes on the threshold manifold
(the red outlined dots). The unstable edges (yellow) and their
preimages (black-dashed) form the basin boundaries.
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Global geometry of phase space partitioning

Using our results, we build a summary the phase space
organization of these spiking circuits as we have revealed
it (Fig. 5). Figure 5a schematizes the phase space ge-
ometry local to a basin in the unfolded Poincare sections
where an attracting trajectory is located at the center, as
in Fig. 2a. Sub-critical perturbations push the perturbed
state within the tube and vanish over time, while super-
critical perturbations lead to a divergence event at some
future spike time. The preimages of the divergence event
in previous sections determine the flux tube boundary
back to the perturbation time. The flux tube indicator
function, extending out in one perturbation direction, has
support only on the local tube. Averaging this function
over perturbation directions and states gave the survival
probability of remaining in a flux tube after a perturba-
tion.

This trajectory-centered view is useful for quantifying
local deviations away from stable trajectories. It is nev-
ertheless artificial because the location of the stable tra-
jectory is not established a priori, but is determined by
the combination of the spatial layout of spike collisions
(and thier pre-images) in the phase space and the pro-
jected effects of the inhibition-induced volume contrac-
tion of the postsynaptic subspace. Our results suggest
a picture of the geometry based on the global partition-
ing of the phase space by these events (Fig. 5b). Here,
input-output spike collisions are represented by the sub-
set of hyperedges of the N -dimensional unit hypercube
of phases where the corresponding voltages of two con-
nected neurons both approach threshold. A perturbed
trajectory will diverge once one of these unstable edges
is crossed. The projections of these unstable edges into
the Poincare section of the dynamics generates a par-
tition (Fig. 5b(left)). The flux tube partition emerges
as the refinement of this partition obtained by iterating
it backwards in time using the inverse of the Poincare
map. Different parts of this refined partition are sam-
pled by the trajectory’s neighborhood as it evolves. The
polytope basin boundaries thus arise as backward iter-
ates of the unstable edges lying nearby the trajectory
(Fig. 5b(right)). Unstable edges at sufficiently distant
future spikes (the gray edge at s4) will no longer refine
the partition in the local neighborhood (at s1), since the
expansive backwards dynamics maps the projected edges
outside the neighborhood. The refinement thus converges
to a unique global partition of the phase space.

For concreteness, in Fig. 5c we use rotated per-
spectives to show how the projection captures the full
phase space dynamics in the flux tube partition of a
fully-connected, 3-neuron network. There are two sta-
ble spike index sequences for this network, . . . 123 . . .
and . . . 213 . . . . Permutation of any adjacent spikes thus
changes the encoding symbol, i.e. tube, in which the

trajectory resides.
More generally, the spike-based code emerging from

this partitioning is insensitive to permutations of adja-
cent spikes from unconnected neurons, and thus exhibits
error-corrective properties. This insensitivity necessarily
lowers the spike sequence entropy. In a large window T ,
there are Nν̄T number of spikes, Kν̄T of which arrive at
a given neuron, which itself emits ν̄T spikes (ratio: N to
K to 1, respectively). The number of all possible distinct
spike-index sequences in this window scales roughly as
NN . An upper bound for the entropy then scales super-
extensively as N logN , similar to the scaling found in an
estimate of the entropy of the sequence of network states
under this partition [14]. However, the entropy of the
spike index sequence is constrained by the dynamics. An
index sub-sequence of the network activity can be associ-
ated with each neuron by combining its input and output
spikes. Enumerating the possibilities for this index sub-
sequence that are considered distinct under the flux tube
partition, only the positions of its output spikes relative
to its input spikes need to be considered. The number
of such positions scales with K and there is such a sub-
sequence for each of the N neurons so that an upper
bound on the entropy is N logK = N log pN � N logN
for K � N . We conclude that the partitioning of the
phase space by the dynamics, and the insensitivity of this
partition to permutations in the spike sequence involving
unconnected neurons, constrains the capacity of the as-
sociated spike-sequence neural code, while providing a
robustness to sub-critical perturbations in the encoding.

DISCUSSION

Attractor states and their basins of attraction play
a fundamental role in theories of neural computation.
Methods from the physics of disordered systems have
served these theories by mathematically characterizing
the statistics of dynamics and phase space organization of
rate networks (e.g. Ref. [2] calculates their typical basin
diameter in the limit of high gain). Insight is gained
by tracking the parameter dependencies in the result-
ing expressions back to the ingredients used to specify
the model. In this contribution, we have used this ap-
proach for the treatment of the attractor geometry of flux
tubes in the inhibitory LIF networks recently considered
by [14]. This dynamics serves as the limiting example
of inhibition-dominated spiking circuit models with fast
action potential onset and fast synapse kinetics that is
relevant to cortical dynamics.

Through massive activity simulations we present the
phenomenology of the time-variation of flux tube attrac-
tors. The flux tube diameter enclosing an attracting tra-
jectory contracts with the rate of volume contraction per
neuron that we derive as, λK/N = pd = (Nν̄τ)−1, and
is due to the inhibition received across the subspace of
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post-synaptic neurons. This contraction is punctuated,
however, by blowup events occurring when an initially
adjacent flux tube diverges. We provide a formal defini-
tion of the attractor boundary with which we identify the
boundary trajectories, and track the source of the blowup
and divergence instability to a collision of an input and
output spike. The exponential shape of the boundary
is thus formed by the pre-images of these collisions and
the blowup events occur as the network state passes a
nearby collision event, and the basin boundary expands
out to a pre-image of the next nearest collision event.
The rate of spikes in the sub-populations connected to a
given neuron, ωK = Kν̄, controls the probability of that
neuron being involved in a collision event. Once a col-
lision event occurs, it sets off an exponential (with rate,
ωK) cascade of such events afterward that is responsible
for the tearing away of some adjacent tube.

Using the nature of these collision events to mathemat-
ically identify the spiking trajectories lying on flux tube
boundaries, we were able to calculate the size distribution
of these basins as a survival probability of a perturbation
of a given size and direction remaining with in the local
basin. The average basin diameter is controlled by the
ratio of these per neuron rates, (λK/N)/ωK , as the two
dominant opposing contributions to the stability. Both
rates depend in the same way on the relative number
of interactions, i.e. the dimension of the pre and post
synaptic subspace to any neuron, K. It then cancels in
the resulting expression, appearing in ε∗ only implicitly
in the scaling of the synaptic coupling, J , and so does not
directly control the attractor geometry. The remaining
ratio reveals the parameters controlling these two rates,

ε∗ ∝ |J | /N
ντ

≡ inhibitory coupling strength: stabilizing
rate of spikes: destabilizing

.

Namely, the synaptic coupling strength controls the
stabilizing contraction per neuron, while the non-
dimensionalized, single neuron spike rate controls the
number of candidates for a collision event and thereby
the destabilizing contribution to the dynamics. In the
final expression, this is multiplied by

√
N to accounts for

the projection of the perturbation onto a single neuron.
From these results, we formed a geometric picture of

the structure of the high dimensional phase space using
a Poincare map obtained from the phase representation.
Trajectories evolve parallel to the main diagonal and hit
the sides of the unit hypercube at spikes times. Edges of
the cube with (1, . . . , 1) as a vertex are where the voltages
of two neurons neurons reach threshold. Collision events
are localized in the space to the subset of these edges as-
sociated with connected neurons. Successive preimages
of these edges generate successively refined partitions of
the phase space. On account of the expansive reverse-
time dynamics, this refinement converges to the unique
flux tube partition on the space. Together, the elements
of this dynamics-generated partition form a finite resolu-

tion code of the input signal (for this autonomous dynam-
ical system the input is simply the initial condition). For
spike sequence-based codes, sequences are distinct under
this code only if they differ in the ordering of spikes in
any of the O(KN) sub-sequences of spiking activity from
pairs of connected neurons. Thus, we find that the non-
commutability of the spike sequence to adjacent transpo-
sitions, previously proposed as applying generically[14],
applies only to these subsequences. The code is insensi-
tive to permutations of adjacent spikes from unconnected
pairs of neurons and a reduced entropy of the code re-
sults.

We emphasize that collision events structure the phase
space in this way only when the dynamics is linearly sta-
ble. For inhibition-dominated circuits, this phase has
been found in the biologically relevant regime of fast but
finite action potential onset and fast but finite synapse ki-
netics [7, 9, 19, 20]. We have applied the theory to explain
phase space partitioning in the case of inhibitory, pulse-
coupled LIF networks, a limiting model for this regime.
Using natural extensions of the LIF to fast but finite ac-
tion potential onset and fast but finite synapse kinetics,
respectively, we find that the abrupt spike time jumps un-
derlying the instability structuring the attractor basins
in LIF networks nevertheless persist when using these
non-limiting neuron models in this regime. As expected
from our theory, divergence events have been observed in
both these models [7, 19]. We leave understanding how
collision events are involved in the transition out of this
regime to future work, but we do show that they persist
in two canonical relaxations of the LIF neuron limit.

Applying our approach in a relatively idealized context
allowed for a tractable assessment of phase space orga-
nization. We have nevertheless neglected additional het-
erogeneity in many properties. For instance, in contrast
to the locally stable regime studied here, mixed networks
of excitatory and inhibitory neurons can instead be con-
ventionally chaotic when the excitation is strong enough
[21]. It appears this chaos can nevertheless be suppressed
in the ubiquitous presence of fluctuating external drive
[26–29] and with spatially-structured connectivity [10].
These observations, as well as the stable embedding of
spiking patterns into recurrent circuits [30], suggest lo-
cally stable dynamics and phase space partitioning are
more general features of spiking circuit dynamics than
the specific setting studied here.

Our theory of destabilizing collision events treats in-
stabilities by locating in the phase space abrupt changes
in subsequent spike times produced as the network state
is perturbed off an attracting trajectory. The existence of
such instabilities is thus intimately tied to the granularity
of spikes, and has no equivalent in rate networks. Despite
the instability, chaos is kept at bay in this regime by the
dominating effect of the contraction at spike times arising
from the inhibitory and pulse-like form of the coupling.
With increasingly smooth versions of the coupling or the
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hard threshold, this stabilizing contraction is smeared
in time, and presumably eventually succumbs to other
destabilizing effects, yet to be well-characterized, and the
dynamics turns chaotic. Our theory also applies to other,
as yet unknown, and even coexisting instabilities involv-
ing spike collision events, the existence of which requires
further investigation. Our work demonstrates that both
unit dynamics and the type of interaction coupling will
play a role.

Our approach, in particular the way we have quanti-
fied the ensemble of perturbed spiking trajectories, can
inform formulations of local stability in less idealized
contexts. Of particular interest are extensions where a
macroscopic fraction of tubes remain large enough to re-
alize encoding schemes tolerant of intrinsic and stimulus
noise. For example, using random dynamical systems
theory [29, 31] to incorporate stochastic external drive
could provide theoretical control over spiking dynamic
variants of rate network-based learning schemes to gen-
erate stable, input-specific trajectories [32]. We note that
our expression for the survival probability (Eq. 21) takes
the form of a q-Pochhammer symbol enumerating all par-
titions of a set. How exactly this relates to our enumer-
ation of paths through the network, which we needed
to compute the spike time deviations due to a previous
perturbation to the network state, is left to future work.

Our calculations can be performed for different dis-
ordered connectivity ensembles (e.g. correlated entries
from annealed dilution processes [33] and structured
second-order statistics [34]). That the spatial structure of
cortical circuits [8, 10] is stabilizing suggests that desta-
bilizing collision events will be relevant for extensions to
more realistic connectivities. Different activity regimes
(e.g. non-Markovian spike interval processes [35]) as well
as any hard threshold neuron model with known phase
response curve are also amenable to our approach, so long
as the averages remain mathematically tractable.

We note that flux tubes are not in a formal sense basins
of attraction. The locally stable trajectories they enclose
are in fact transients. They are nevertheless made quasis-
tationary by a transient time growing exponentially with
network size [9]. Formally, the linear stability of the dy-
namics precludes a finite-value for the Kolmogorov-Sinai
entropy rate. Nevertheless, the partition refinement pic-
ture we provide in Fig. 5b is very much analogous to the
formal partition refinement used in symbolic dynamics to
define trajectories in chaotic systems. The difference is
that in our setting the the refinement process converges
in a finite number of steps and to partition elements hav-
ing finite measure (i.e. not points), suggesting that there
is transient production of information about a pertur-
bation that persists up to timescales of the order of the
divergence event time, t∗. Formally establishing this con-
nection to ergodic theory is an interesting direction for
future research.

Recent advances in experimental neuroscience have al-

lowed for probes of the finite-size stability properties of
cortical circuit dynamics in vivo. For example, simulta-
neous intra- and extra-cellular recordings in the whisker
motion-sensing system of the rat reveal that the addition
of a single spike makes a measurable impact on the un-
derlying spiking dynamics of the local cortical area [36].
Indeed, rats can be trained to detect perturbations to
single spikes emitted in this area [37]. Toy theories ex-
plicitly representing spiking interactions, such as the one
presented here, can inform future experimental studies
by highlighting the features of spiking neural circuits that
contribute to these response properties. This combined
theory-experiment approach promises to elucidate a rich
substrate for collective computation in terms faithful to
the way neurons actually interact.
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Appendix A: Event-based simulations

A true phase representation is defined on a circular
domain, e.g. [0, 1]

N with 0 and 1 identified. The phase
dynamics we analyze is termed a pseudophase represen-
tation, ~φ(t) ∈ (−∞, 1]

N since the phase can be kicked to
a negative value by an inhibitory input arriving when the
voltage is near its reset value, V ≈ Vres. We hereon drop
pseudo from the term.

The complete phase representation dynamics is given
by:

φ̇n (t) = T−1
free +

∑
s

Annsδ(t− ts)Z(φn (ts)) (A1)
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with constant phase velocity, T−1
free, the phase response

curve, Z(φ), and a spike-reset rule: when φn = 1, φn is
reset to 0. Note that in the large-K limit the phase and
the voltage representation converge onto one another (see
[14]).

Event-based simulations of Eq. (A1) were imple-
mented by iterations of a spike-time map that takes the
network state from just after one spike, t+s , to just after
the next, t+s+1, where s is the index of the network spike
sequence. The next spike time, ts+1, and next spiking
neuron in the sequence are obtained simply in the phase
representation via

ts+1 = ts + min
n∈{1,...,N}

(1− φn(ts))Tfree ,

ns+1 = argminn∈{1,...,N} (1− φn(ts))Tfree ,

respectively. An iteration consists of evolving the net-
work phases to this next spike time, ts+1, applying the
pulse of size Z(φm (ts+1)) to the postsynaptic neurons,{
m|Amns+1

= 1
}
, and then resetting the phase of the

spiking neuron, ns+1. For further details, as well as
methods for computing the Lyapunov spectrum for this
network, see [14].

This implementation was used to apply perturbations
to the system, and measure the subsequent activity. The
model was simulated in isolation for a time before the
application of the perturbation to allow it time to relax
onto the stationary measure.

Appendix B: Determining the critical perturbation
strength

The separation of trajectories is quantified using the
1-norm distance,

Dt (ε) :=
1

N

N∑
n=1

|φn,t − φn,t (ε)| , (B1)

between ~φt and the perturbed trajectory, ~φt(ε), evolving
freely from the perturbed state, ~φ0 (ε) := ~φ0 +~ε with the
perturbation time set as t = 0 and the perturbation vec-
tor, ~ε := ε√

N
~ξ. The norm of ~ε is order 1 in N for σ2

ξn

order 1. ε∗ is the largest value below which Dt (ε) van-
ishes in time. We use a bisection method on ε (described
in Appendix C) to obtain ε∗.

Appendix C: Estimation of the critical perturbation,
ε∗

A random perturbation direction, ~ξ, was obtained by
sampling N − 1 times from a standard normal distri-
bution, normalizing this vector, and projecting it into
the N -dimensional phase space such that it was orthog-
onal to the phase velocity vector ~ω =

(
T−1

free, . . . , T
−1
free

)
.

Constrained to this hyper-plane, the perturbation alters
only relative spike time differences, i.e. there is no global
shift in spike times. For ε > 0, the critical perturbation
size, ε∗, in that direction was obtained using a bisection
method. The initial estimate of ε∗, ε∗0 = J0/

(√
KNν̄τ

)
was lower-bounded by ε∗low = 10−4 · ε∗0, and upper-
bounded by ε∗up = 1. The estimate ε0 was iteratively re-
fined based on a divergence flag on the distance between
the perturbed and unperturbed trajectories at time T
after the perturbation:

If DT (εi) > Dthresh,

then ε∗upp ← ε∗i ;

else

ε∗low ← ε∗i ,

for iteration index i, where Dthresh = 0.01 denotes the
threshold chosen to lie between the two well-separated
modes of the end-distance distribution. (Dt eventually
saturates due to the bounded phase-space at the average
distance, D̄, between a pair of random trajectories, and
computed in Ref. [14].) A bisection step was then made,

ε∗i+1 =
ε∗upp + ε∗low

2
,

to obtain the estimate of the next iteration. The pro-
cedure was repeated until the differences in successive
values of ε∗i fell below a tolerance threshold of 10−8, and
the final estimate taken as ε∗.

Appendix D: Constructing the folded phase space
representation

Here, we describe the procedure used to construct the
folded representation of the phase space around the at-
tracting trajectory shown in Fig.2b and the SI Movie.
Similar to Fig. 7 in Ref. [14], the same, random 2D pro-
jection of the (N − 1)-dimensional subspace orthogonal
the trajectory was applied at each iteration of the event
map. This subspace remains unchanged by the evolu-
tion since in the phase representation the trajectory is
always parallel to the main diagonal of the unit hyper-
cube. Then, a rectilinear grid of initial conditions were
generated in these planes. The network was simulated
from each initial condition and the corresponding grid
of end-states stored. A corresponding grid of the pair-
wise distances between end-states of all adjacent initial
conditions was computed. Distances falling in the finite-
distance mode of the resulting bi-modal end-state dis-
tance distribution centered around the average distance,
D̄, were used to identify adjacent initial conditions span-
ning a putative flux tube boundary. A putative tube
identity label was assigned to each continuous region of
corresponding initial conditions enclosed by these puta-
tive boundaries in the grid. We occasionally observed

file:http://www.phys.ens.fr/~mptouzel/pdf/PuelmaTouzel_Partioning_suppvideo.avi
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single tubes segregated into disjoint pieces in our 2D rep-
resentation by the occlusion of another tube, consistent
with the layering of projections as proposed in Fig. 5b.
For robustness then, a round of amalgamation of tube
identities was performed by identifying as the same any
two tubes whose centers of mass gave a end-state dis-
tance which fell below a threshold of 0.01. Again, that
the modes were well separated made for unambiguous
flagging.

This algorithm to compute a single cross-section was
then repeated at each spike of the network activity in
a simulated time window to obtain a set of successive
cross sections orthogonal to and centered on the stable
trajectory. To present this data, a folded representation
is used in which these cross sections are placed contigu-
ously so that the center trajectory passes through them
continuously. This gives a 2+1D representation of the
tube and its neighborhood along the stable trajectory,
oriented such that the line (0, 0, t) is horizontal with time
increasing to the right. The identity of the center tube
is trivially maintained across sections since the (0, 0)-
perturbation leaves the stable trajectory unchanged. To
keep track of the identities of the surrounding tubes rep-
resented in the successive sections requires an identity list
passed forward and updated from section to section. We
constructed such a list by again comparing all pairwise
end-state distances of the center of masses of all cells of
the previous and current cross sections. We identified
successive cells as coming from the same tube if this dis-
tance fell below a threshold. Identities were added when
a current cell had no match in the previous section corre-
sponding to the event of a new tube entering the section.
Identities were removed when a cell in the previous sec-
tion had no match in the current section corresponding
to the event of an existing tube leaving the section. We
then used this identity list to color the cells, using an
adaptive color assignment scheme in order to keep the
range of colors reasonably bounded. This scheme ran-
domly assigned unused colors, orphaned from tubes that
had exited the section, to the cells of new tubes that had
entered the section.

Appendix E: Instability caused by spike collision
events

In this section, we determine from simulations of the
dynamics that (1) the perturbed trajectories begin to
diverge where a difference in the spike sequence appears;
(2) this change is associated with a vanishing interval;
and (3) this interval is between susceptible spikes, i.e
spikes from a pair of neurons that exhibit one of the three
connected-pair motifs.

Over perturbation directions, an ensemble of pairs of
perturbed trajectories were simulated using a perturba-
tion strength just above, ε∗+, and just below, ε∗−, the

estimate obtained according to the procedure described
in Appendix C (notation: x± = limδ→0 x± δ). From the
simulation started at ε∗

+

, the decorrelation index, s∗, was
extracted as the index in the spike sequence at which a
sustained difference between the pair of sequences began.
We denote elements of the perturbed spiking neuron se-
quence and spike times as ns (ε) and ts (ε), respectively.

We first show that the sustained jump in distance be-
gins at the decorrelation index, s∗. We aligned by s∗

across trials the distances, Ds(ε
∗+), to the unperturbed

trajectory from the perturbed trajectory started from ε∗.
The result, in Fig. E.1a shows the high correlation across
trials.

Next, in Fig. E.1b,c we see that the spike time interval,
ts∗+1 (ε)−ts∗ (ε) corresponding to s∗ before (ε = ε∗−) and
after (ε = ε∗+) the collision event, respectively, vanishes
only when Ans∗ns∗+1

= 1. In addition, ts∗+1 (ε)− ts∗ (ε)
scales inversely with the precision of the bisection algo-
rithm used to obtain ε∗, demonstrating that the event
is indeed generated as two spikes become coincident,
ts∗+1 (ε)→ ts∗ (ε) as ε→ ε∗ (see Fig. E.1d).

Appendix F: Spike collision motifs

In the main text we focused on the backward-
connected motif. In this section, we discuss the forward-
connected and symmetrically-connected motif. Across
these motifs, under consideration is a situation where
an output spike time of a given neuron, tout, is near in
time to an input spike time, tin, that this neuron re-
ceives. When the output spike is generated before the
input spike, tout < tin (the backward-connected motif),
a collision can occur when a perturbation leads to the
vanishing of the interval between them, an example of
which is shown in Fig. 3 in main text. If tin < tout
(the forward-connected motif), however, the inhibition
means that tin already delays tout for ε < ε∗ so that tout
can occur no closer to tin than ∆tjump, for the same rea-
son that tout undergoes a jump forward in the backward-
connected motif. Thus, a collision event occurs in this
motif when the perturbation brings tin and tout to within
∆tjump of each other.

The two asymmetric motifs give collision scenarios that
are identified under a reversal of the direction of change in
perturbation strength. The forward and backward con-
nected motif can be distinguished by whether the colli-
sion event is approached by an input spike moving for-
ward, dtin/dε > 0, or backward, dtin/dε < 0, over tout
with tout as the reference time. In the forward-connected
motif, the interval vanishes, tin → 0+, for ε → ε∗+, i.e.
just after the collision. In the backward-connected motif,
the vanishing interval, tin → 0+, occurs as ε → ε∗−, i.e.
just before the collision. For either case, when on the
side of ε∗ where the interval is vanishing, the input spike
comes after the output spike, tin > 0, in this reference
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Figure E.1. Characteristics of divergence events. (a) A small window of the distance time series aligned to index, s∗, at which
the decorrelation of the spike sequence begins. The supercritical perturbed (red) trajectory started from ε∗+ jumps up away
from the subcritical perturbed (blue) trajectory started at ε∗− at s∗ (note the logarithmic scale on the ordinate). (b) and (c)
show the spike intervals, ts+1 − ts, for the ε = ε∗+ and ε = ε∗− trajectories, respectively (colors as in (a)). Realizations not
exhibiting the ns∗− → ns∗−+1 and ns∗− ← ns∗−+1, respectively, have been grayed out. Note that those left colored have a
significantly smaller interval at index s∗. (d) Coincidence of successive spikes with increasing precision (decreasing tolerance)
of the bisection algorithm used to find ε∗. Here, a shrinking interval taken from a ε = ε∗+ realization has been used (see the
identified minimum in panel b).

frame.
In each of these two asymmetric motifs, only one of

the pair of spikes undergoes a jump of size ∆tjump. For
the bidirectionally connected motif, however, both spikes
undergo a jump of size ∆tjump simultaneously, by which
they exchange spike times, and so no vanishing interval
exists on either side of the flux tube boundary. A collision
event occurs in this motif with reduced relative frequency,
p, compared with the two asymmetric cases and so is
negligible for sparse networks, p� 1.

The characteristics of an inhibitory event at thresh-
old is a single neuron property, dependent on the neu-
ron model, and so can be investigated for many neu-
ron models. Since the LIF solution, is invertible, one
can explicitly solve for the time, ∆tjump, that the in-
hibitory event has delayed the spike. With initial condi-
tion, V (0) = V −T + J ≈ J ,

VT =
√
KI0 −

(√
KI0 + J

)
e−

∆tjump
τ

∆tjump = τ ln

(
1 +

J√
KI0

)
(F1)

Using the balance equation, Eq. 3, we obtain ∆tjump ∼
τ ln

(
1 + (Kν̄τ)

−1
)
∼ (Kν̄)

−1, for K � 1, as stated in
the main text.

The inhibition prohibits susceptible spike pairs in the
forward-connected (and bidirectional) motif that occur
closer than 1/(Kν̄). Thus, these pairs are separated in
time by on average 2/(Kν̄) in the unperturbed trajec-
tory. However, since they collide when they come within
1/(Kν̄) from one another, the susceptible pairs in a colli-
sion event for the forward-connected and symmetric mo-
tifs are effectively separated by the same perturbation
distance as those pairs satisfying the backward-connected
motif.

Appendix G: Collision events for neuron models
with smooth interaction and threshold dynamics

Here, we demonstrate that for two natural extensions
of the LIF neuron model into the non-limiting regime of
finite derivatives in the dynamics, the abrupt spike time
shifts perists.
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We simulated the inhibitory input spike at threshold
event for a neuron model with an active spike-generating
mechanism, the rapid-theta neuron (18). The theta neu-
ron model on which it is based is the phase representation
of the normal form of a saddle node bifurcation to peri-
odic firing and thus its features are universal to all neuron
models operating near this transition. It has an addi-
tional parameter relative to that model, the rapidness
r, that controls the speed at which the voltage diverges.
With the addition of finite speed of action potential on-
set, i.e. with a smooth threshold, the spike jump has
a similar magnitude as in the LIF case, but now grows
smoothly with perturbation strength after the collision
(Fig.3d, bottom). As the action potential onset rapid-
ness increases, however, this growth becomes sharper,
approaching the discontinuous jump for the LIF neuron
(Fig. H.1c). Divergence events thus result from spike col-
lisions in this regime and the divergence rates have been
quantified (18) similarly to the case of the LIF (14).

We also simulated the inhibitory event at threshold
also for the LIF neuron with the addition of an inte-
grating synaptic current compartment so that In(t) =
Iext + Isyn(t) where Isyn(t) is governed by τsyn

d
dtIsyn =

−Isyn + τJ
∑
sAnnsδ(t− ts). With the addition of finite

synaptic current kinetics to the model that low-pass fil-
ter the input and smooth the interaction dynamics, the
spike time jump is still instantaneous with magnitude ap-
proaching that of the LIF neuron for vanishing synaptic
time constant (Fig.H.1d, top). Thus, collision events for
finite-speed kinetics can induce divergence events. Since
the corresponding jump size decreases as the kinetics are
slowed, however, this collision-based instability is less
likely to induce a cascade for slower kinetics and so its
destabilizing effect on the dynamics is weakened the fur-
ther away the system is poised from the LIF regime.

Appendix H: Cascade probability

For ε approaching ε∗, the presynaptic spike time,
ts′=s∗+1, is advanced relative to the postsynaptic spike
time, ts∗ , until the two spikes collide (see Fig. 3a). At
collision (ε = ε∗), the pulsed inhibition and the voltage’s
rate of approach to threshold cause an abrupt delay of
ts∗ by ∆tjump (Fig. 3b). Using Eq. (3) and the single
neuron dynamics we obtain

∆tjump = τ ln [1 + d] ≈ τd = (Kν̄)
−1 (H1)

for d� 1.
Since ∆tjump ≈ ω−1

K , the spike time of neuron ns∗

is typically shifted far enough forward to cross a spike

emitted by a neuron in its postsynaptic population.
Formally, the probability, ppost, of a spike emitted by
any of the post-synaptic neurons during the window of
size (Kν̄)−1 over which the output spike has jumped is
K
(
1− e−1/K

)
= 1 − 1

2K + O
(
K−2

)
. Since the subse-

quent activity of a neuron involved in a collision event is
irreversibly altered, there are on average logN/ logK <
N/K = 1/p number of these events until the activi-
ties of all neurons have been altered. A lower bound
on the probability of a cascade is then (ppost)

1/p ≈(
1− 1

2pN

)1/p

→ 1, in both the sparse (N →∞ and pN
fixed) and dense (N → ∞ and p fixed) thermodynamic
limit.
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Figure H.1. Spike crossing instability in other models. (a)
Phase response curves for a smooth threshold neuron model
(green) qualitatively approximate that of the LIF neuron
(black) as action potential onset rapidness is increased (light
to dark). (b) Parametrized family of voltage traces of an in-
hibitory event near threshold for other neuron models. Top:
A smooth threshold model parametrized by increasing action
potential onset rapidness (green to blue). Bottom: A smooth
synaptic coupling model parametrized by decreasing synaptic
time constant (red to blue).

Appendix I: Susceptibilities, as

The spike time deviation, δts (ε) := ts (ε) − ts (0), is
composed of a contribution by the direct perturbation
to ns, and a contribution from the indirect effects of the
perturbation via deviations of the input spike times to ns.
The deviations from both of these contributions will be
contracted across subsequent input spikes to that neuron.
The derivative with respect to perturbation strength thus
consists of a differential due to changing initial state with
fixed input spike times and due to changing input spike
times with the initial state fixed, respectively:

dts
dε
≈ ∂ts

∂ε
+

s−1∑
j=1

dtj
dε

∂ts
∂tj

(I1)

The chain-rule calculation is
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dts
dε
≈ ∂ts

∂ε
+

s−1∑
j=1

dtj
dε

∂ts
∂tj

=
dφns

(
t−1
)

dε

s−1∏
j=1

∂φns
(
t+j
)

∂φns
(
t−j
)
 ∂ts

∂φns
(
t+s−1

) +

s−1∑
j=1

dtj
dε

∂φns
(
t−j
)

∂tj

 s−1∏
k=j+1

∂φns
(
t+k
)

∂φns
(
t−k
)
 ∂ts

∂φns
(
t+s−1

)
=

(
ξn1√
N

)s−1∏
j=1

(
1 + dφjs

)Ansnj (−Tfree) +

s−1∑
j=1

(
− 1

Tfree
Ansnjdφjs

) s−1∏
k=j+1

(
1 + dφks

)Ansnk (−Tfree)
dtj
dε

dts
dε

=
−Tfree√

N
ξn1

s−1∏
j=1

(
1 + dφjs

)Ansnj+

s−1∑
j=1

Ansnjdφjs

 s−1∏
k=j+1

(
1 + dφks

)Ansnk dtj
dε

where dφjs is shorthand for the derivative of the PRC,

dφjs := Z ′(φns(tj)) ,

evaluated at the phase of the ns neuron at the time of
the jth spike in the network spike sequence, and where
the perturbation direction vector, ~ξ, is not normalized
but explicitly divided by

√
N , preserving the O

(
1/
√
N
)
-

scaling of a unit vector.
The result contains three contributions: perturbations

to ns, perturbations to neurons connected to ns, and
the contraction events from input spikes to ns. Dividing
the result by −Tfree√

N
, and rescaling the perturbation to

ε̃ =
−Tfree√

N
ε, we obtain

δts (ε) =
dts
dε̃

dε̃

dε
ε = −Tfree√

N
asε , (I2)

as stated in the main text (Eq. (14)).

Appendix J: Details of Derivation of flux tube
diameter distribution

The state being perturbed at t = 0, ~φ0, is an equi-
libriated state whose probability density function de-
pends in general on the realization of the connectivity,
A = (Amn). For large, sparse connectivities, however,
the self-averaging properties of A leave the invariant den-
sity ρ

(
~φ0

)
dependent only on the parameters of the con-

nectivity ensemble and not the particular realization. A
closed form for this density has been previously derived
(see [14]), though we will not need it here since the de-
pendence of dφjs on φ

j
s becomes negligible at large K (Eq.

(7)).
We rather require the distribution of unperturbed in-

tervals. In a diffusion approximation, applicable to large,
sparse graphs, the inputs to different neurons are negligi-
bly correlated. Each of the set of unperturbed inter-spike
intervals, {∆ts}, of the compound spike sequence obeys

a distribution that with increasing N rapidly approaches
the same exponential form with rate Nν̄, ρ(∆ts) =
Nν̄e−Nν̄∆ts for all s (see Fig. J.1).
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Figure J.1. Network spike time interval probability density,
ρ(∆t). ρ(∆t) is distributed exponentially (N = 104, ν̄ =
10 Hz, 107 network intervals). Dashed line is the prediction,
ρ (∆t) = Nν̄eNν̄∆t. Note that the abscissa is scaled by Nν̄.

The distribution of {∆ts} is then

ρ({∆ts}) =

M∏
s=2

ρ(∆ts) . (J1)

The susceptibilities, ∆as, simplify in three ways. The
size of indirect effects (the second term in Eq. (14)) are
suppressed for large K, since they additionally contain
dφjs ∝ K

−1 as a factor. Thus,

as ≈ ξns
s−1∏
j=1

(
1 + dφjs

)Ansnj
. (J2)

The small synaptic strength linearizes Z (φ) for K �
1 so that dφjs ≈ −d with d := (Kν̄τ)−1 > 0 (Eq.
(7)) so as no longer depends on the distribution of
states. Third, for non-small s a fraction p of the ear-
lier spikes {1, . . . , s− 1} are from neurons presynaptic to



17

ns so that as ≈ ξns (1− d)
∑s−1
j=1 Ansnj ≈ ξns (1− d)

ps
=

ξns

((
1− (ν̄τ)−1/K

)K) s
N ≈ ξnse

−pds for K � 1. Thus,

∆as ≈ e−pdsξns − e−pd(s−1)ξns−1
≈ e−pds

(
ξns − ξns−1

)
,

since epd ≈ 1 for N � 1. We note that −pds ≈ λt where
λ = −τ−1 serves here as an estimate for mean Lyapunov
exponent, λmean, at large K, calculated in [14].
σξ then determines the numeric prefactor in the stan-

dard deviation of ∆as, σ∆as , and so can be set to make
this prefactor unity. ρ(ξ) was chosen as a centered nor-
mal distribution in order to generate isotropic perturba-
tion directions. The difference of two independent cen-
tered normal random variables has 0 mean and twice
the variance. Thus, σ∆as =

√
2σξe

−pds. We also note
that [as]ρ(~ξ) = 0 when serial correlations are negligible,[
ξnsξns−1

]
= δnsns−1

, as assumed in the main text, and
[ξns ]ρ(~ξ) = 0 for the isotropic perturbation direction dis-
tributions used here.

The expectation of Ss (ε) (Eq. (20)) is then evaluated
as

Ss (ε) =

[
Θ

(
∆t− Tfree√

N
∆asε

)Amn]
ρ(∆t)ρ(∆as)PAmn (Amn)

= (1− p) + p
2√
π
ec

2
s

ˆ ∞
cs

e−y
2
sdys

= (1− p) + pec
2
s

(
1−
ˆ cs

0

e−y
2
sdys

)
= 1 + p (Erfcx [cs]− 1)

with ys = xs + cs, xs = ∆as/
(√

2σ∆as

)
,

and cs =
Tfree

∆t
ε√
N
σ∆as and where Erfcx [x] =

ex
2
(

1− 2√
π

´ x
0
e−y

2

dy
)
is the scaled complementary er-

ror function. Using the approximation Erfcx [cs] − 1 ≈
−cs for cs � 1 (true if ε/√p� 1), we obtain Eq. (21).

∗ puelma@lpt.ens.fr
[1] Hopfield JJ Neural networks and physical systems with

emergent collective computational abilities. Proc. Natl.
Acad. Sci. USA 79(8), 2554–2558 (1982).

[2] Gardner E Optimal basins of attraction in randomly
sparse neural network models. J. Phys. A 22(12) 1969-
1987(1989).

[3] Sompolinsky H, Crisanti A, Sommers HJ Chaos in ran-
dom neural networks. Phys. Rev. Lett. 61(3) 259–262
(1988).

[4] Kadmon J, Sompolinsky H (2015) Transition to chaos in
random neuronal networks. Phys. Rev. X 5(4):1–28.

[5] Abbott LF, DePasquale B, Memmesheimer RM Building
Functional Networks of Spiking Model Neurons. Nat.
Neurosci. 19, 1–16 (2016).

[6] Gutig R Spiking neurons can discover predictive features
by aggregate-label learning. Science 351(6277) 1–13
(2016).

[7] Jahnke S, Memmesheimer RM, Timme M How Chaotic
is the Balanced State? Frontiers in computational neu-
roscience 3 13 (2009).

[8] Engelken R, Wolf F Dynamical entropy production in
cortical circuits with different network topologies in
COSYNE Abstracts (2013).

[9] Zillmer R, Brunel N, Hansel D (2009) Very long tran-
sients, irregular firing, and chaotic dynamics in networks
of randomly connected inhibitory integrate-and-fire neu-
rons. Phys. Rev. E 79(3):1–13.

[10] Rosenbaum R, Doiron B Balanced networks of spiking
neurons with spatially dependent recurrent connections.
Phys. Rev. X 4(2) 1–9 (2014).

[11] Ozeki H, Finn, IM, Schaffer ES, Miller KD, Ferster D
Inhibitory stabilization of the cortical network underlies
visual surround suppression. Neuron 62(4) 578 (2009).

[12] Wolf F, Engelken R, Puelma Touzel M, Weidinger JDF,
Neef A Dynamical models of cortical circuits. Curr. Opin.
Neurobiol. 25 228–236 (2014).

[13] Jahnke S, Memmesheimer RM, Timme M Stable irreg-
ular dynamics in complex neural networks. Phys. Rev.
Lett. 100(4):2–5 (2008).

[14] Monteforte M, Wolf F Dynamic flux tubes form reser-
voirs of stability in neuronal circuits. Phys. Rev. X 2(4)
041007 (2012) .

[15] Jin DZ Fast convergence of spike sequences to periodic
patterns in recurrent networks. Phys. Rev. Lett. 89(20)
208102 (2002).

[16] Zillmer R, Livi R, Politi A, Torcini A Desynchronization
in diluted neural networks. Phys. Rev. E 74(3) 1–10
(2006).

[17] Tuckwell HC Introduction to Theoretical Neurobiology:
Volume 2, Nonlinear and Stochastic Theories, Cambridge
Studies in Mathematics. (Cambridge University Press,
2005).

[18] Lindner B Superposition of many independent spike
trains is generally not a Poisson process. Phys. Rev. E
73(2) 1–4 (2006).

[19] Monteforte M Ph.D. thesis (Georg-August University,
2011).

[20] Puelma Touzel M Ph.D. thesis (Georg-August University,
2015).

[21] Monteforte M, Wolf F Dynamical entropy production in
spiking neuron networks in the balanced state. Phys.
Rev. Lett. 105(26) 1–4 (2010).

[22] Harish O, Hansel D Asynchronous Rate Chaos in Spiking
Neuronal Circuits. PLOS Comput. Biol. 11(7), e1004266
(2015).

[23] Mastrogiuseppe F, Ostojic S Intrinsically-generated fluc-
tuating activity in excitatory-inhibitory networks. PLOS
Comput. Biol. 13(4) 1–33 (2017).

[24] Engelken R, Farkhooi F, Hansel D, van Vreeswijk C, Wolf
F A reanalysis of “Two types of asynchronous activity in
networks of excitatory and inhibitory spiking neurons”.
F1000Res 5(0) 2043 (2016).

[25] Engelken R, Wolf F (2015) Input spike trains reduce
dynamical entropy production in balanced networks in
Bernstein Conference Abstracts.

[26] Molgedey L, Schuchhardt J, Schuster HG Suppressing
chaos in neural networks by noise. Phys. Rev. Lett.
69(26) 3717–3719 (1992).

[27] Toyoizumi T, Abbott LF Beyond the edge of chaos: Am-
plification and temporal integration by recurrent net-
works in the chaotic regime. Phys. Rev. E 84(5) 1–8

mailto:puelma@lpt.ens.fr


18

(2011).
[28] Lajoie G, Lin KK, Shea-Brown E Chaos and reliability

in balanced spiking networks with temporal drive. Phys.
Rev. E 87(5) 1–5 (2013).

[29] Lajoie G, Thivierge JP, Shea-Brown E Structured chaos
shapes spike-response noise entropy in balanced neural
networks. Front. Comput. Neurosci. 12(12) e1005258
(2014).

[30] Memmesheimer RM, Rubin R, Ölveczky BP, Sompolin-
sky H Learning Precisely Timed Spikes. Neuron 82(4)
925–938 (2014).

[31] Arnold L Random Dynamical Systems. (Springer, 1991).
[32] Laje R, Buonomano DV Robust timing and motor pat-

terns by taming chaos in recurrent neural networks. Nat.
Neurosci. 16(7) 925–33 (2013).

[33] Boutent M, Engels A, Komodat A, Serneelst R Quenched
versus annealed dilution in neural networks. J.Phys. A
23(20) 4643-4657 (1990).

[34] Zhao L, Beverlin B, Netoff T, Nykamp DQ Synchroniza-
tion from second order network connectivity statistics.
Front. Comput. Neurosci. 5 28 (2011).

[35] Schwalger T, Droste F, Lindner B Statistical structure of

neural spiking under non-poissonian or other non-white
stimulation. J. Comput. Neurosci. 39(1):29–51 (2015).

[36] London M, Roth A, Beeren L, Häusser M, Latham PE
Sensitivity to perturbations in vivo implies high noise and
suggests rate coding in cortex. Nature 466(7302) 123–7
(2010).

[37] Houweling AR, Brecht M Behavioural report of single
neuron stimulation in somatosensory cortex. Nature 451
65–68 (2008).

[38] van Vreeswijk C, Sompolinsky H Chaos in neuronal net-
works with balanced excitatory and inhibitory activity.
Science 274(5293) 1724–6 (1996).

[39] Brunel N, Hakim V Fast Global Oscillations in Networks
of Integrate-and-Fire Neurons with Low Firing Rates.
Neural Comput. 11(7) 1621–1671 (1999).

[40] Renart A, et al. The asynchronous state in cortical cir-
cuits. Science 327(5965):587–90 (2010).

[41] Barral J, D Reyes A Synaptic scaling rule preserves ex-
citatory–inhibitory balance and salient neuronal network
dynamics. Nat. Neurosci. 19(12) 1690–1696 (2016).


	Statistical mechanics of spike events underlying phase space partitioning and sequence codes in large-scale models of neural circuits
	Abstract
	Model definition
	Results
	Phase-space contraction and partitioning
	Punctuated tube geometry
	Decorrelating spike collision events
	Statistical theory of flux tube diameter
	Global geometry of phase space partitioning

	Discussion
	Acknowledgements
	Author Contributions
	Additional Information
	Event-based simulations
	Determining the critical perturbation strength
	Estimation of the critical perturbation, *
	Constructing the folded phase space representation
	Instability caused by spike collision events
	Spike collision motifs
	Collision events for neuron models with smooth interaction and threshold dynamics
	Cascade probability
	Susceptibilities, as
	Details of Derivation of flux tube diameter distribution
	References


