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Motivation 

• As funded scientists, we have a responsibility 
to the enterprise to pursue efficient routes to 
knowledge 

• There are good and bad applications of tools 

• A toolbox becomes a scientific arsenal when 
you know when to use what tool (which 
means knowing their limitations and how far 
beyond those limitations they can still be 
profitably used) 

 

 



Outline 

• Why theory and what is it? 

• Neurophysiology case studies in modelling 
methodologies 

1. population coding in retina (Olivier & Agos) 

2. AP-onset rapidness (Brette) 

3. dendritic morphology 

• Bonus part 1: Approximations and reductions 

• Bonus part 2: Noise and variability 

 



WHY THEORY? 



… 

(Hypothesis-based) 

Why 
don’t we 
just 
make 
decision 
trees? 



i.e. why theory? 
An upgrade to experimental science: 
• Experimental  research programs can become method-centric:  the tools 

risk becoming the hypotheses.  
• Beyond a handful of interacting elements, the human capacity to analyze a 

system through plain intuition and exhaustive  enumeration of the 
possibilities breaks down.  

• Concepts need an 'open source' framework to be useful to the community, 
not just mental pictures in an investigator's head or even in the paper. 

• With models, we can explore parameter regimes not attainable 
experimentally for practical or ethical reasons 

Pre-experiment:  
• Manipulations in experimental protocols are extremely laborious, but with 

well written code, they can be made in a model with the push of a button. 
• So models can often raise and discount hypotheses more quickly than 

experiments, letting us focus the experimental effort on the questions that 
are most informative or interesting. 

Post-experiment:  
• Theory can help interpret regularities in data in the common case when 

no obvious interpretation exist. 
• While data can be context-dependent (e.g. cell prep is special) and 

incomplete (e.g. only for subsystem), models can integrate information 
about a various parts of a system obtained through various ways 



Can’t this be automated? 

Machine learning (e.g. classification and 
regression algorithms) applied to neural data to 
reveal hidden structure is essential to 
neuroscience…but, e.g. 

 

 

 

So, don’t wait for an algorithm to do it for you. 



Well, there 
 is  

only  
one  

truth… 
 

…so model bulldozers  
with quarks? 

 
 
 

Jorge Luis Borges, Collected Fictions 
 
 
 …In that Empire, the Art of Cartography 
attained such Perfection that the map of a  
single Province occupied the entirety of a City, 
and the map of the Empire, the entirety  
of a Province. In time, those Unconscionable 
Maps no longer satisfied, and the  
Cartographers Guilds struck a Map of the 
Empire whose size was that of the Empire, and  
which coincided point for point with it. The 
following Generations, who were not so  
fond of the Study of Cartography as their 
Forebears had been, saw that that vast Map  
was Useless, and not without some Pitilessness 
was it, that they delivered it up to the  
Inclemencies of Sun and Winters. In the Deserts 
of the West, still today, there are  
Tattered Ruins of that Map, inhabited by 
Animals and Beggars; in all the Land there is  
no other Relic of the Disciplines of Geography.  
—Suarez Miranda,Viajes de varones prudentes, 
Libro IV,Cap. XLV, Lerida, 1658 

"we now use the country itself, as 
its own map, and I assure you it 
does nearly as well.“-Lewis Carroll 

On Exactitude in Science:   
                              how much detail?  

-Goldenfeld & Kadanoff, Science (1999) 



Not all DOFs  in a system are ‘active’ in 
the function under study 

e.g. how many dimensions do you need to 
reconstruct the attractor of a lobster stomatogastric 
CPG neuron voltage trace? 

 • Time-delay embedding 
 
 
 
• Method of false nearest 

neighbors: 

answer: 
3! 

Abarbanel et al. Neuro. Comp. 1996 

𝑉𝑡 𝑉𝑡−1 𝑉𝑡+1 (𝑉𝑡−1, 𝑉𝑡, 𝑉𝑡+1) 



Approach depends on goal 

 

Ch.1, Ellner & Guckenheimer 2006  



Theory models 
• Einstein said:  
 “A model should be as simple as possible but not simpler.” 
• He also said:  
 “It is just as much an intellectual offense to include a detail 
 that is unnecessary as to exclude one that is.” 
 
 
 
 
 
 
 
 
 
• All models are wrong; some are useful (i.e. those that are well 

chosen). 
 

model 
assumptions 

simulation solution 
properties 



3 CASE STUDIES IN MODELLING 
METHODOLOGIES 



Case study 1: assessing retinal population coding 

macaque salamander 



generalized  
linear  

models 

maximum 
entropy  
models 

 

Case study 1: assessing retinal population coding 

Versus 

Pillow et al., Nature 2008 
Schneidman et al., Nature 2006 



generalized  
linear  

models 

maximum 
entropy  
models 

 

a generative model  
(generates output from input) 

a statistical model  
(of pattern probabilities) 

N_cells=27 N_cells=40 

N_paras=70/filter *(4*27 filters)>5000 N_paras=55 (for N=10) 

Fitted using maximum likelihood to 7min 
of spike responses 

convex optimization constrained by 1st & 2nd 
order statistics 

Test with no coupling Test with conditional independence 

Vs. 

Case study 1 



generalized  
linear  

models 

maximum 
entropy  
models 

 

Vs. 

Case study 1 

-gives temporal response and correlation 
-weak estimate of information (via logSNR) 
-lacks some observed features and only 
phenomenological 

-compute information directly 
-can extrapolate to larger networks 
-can’t assess stimulus dependence 



Parsimony Inquisitive 
Power 

Vs. 

Case study 1 

Trade-off between:  

 how much you can ask  

  and  

 how little you have to assume 

-no curse of dimensionality 
-stronger arguments 
-fewer questions can be answered 

-dimensionality a problem 
-can ask more 



Case study 2: causes and effects of action 
potential onset rapidness 



hard 
threshold 

active AP-
generation 

Rapid LIF model 

Case study 3: AP onset rapidness 

Vs. 

GOAL:  
tractable model with 
variable rapidness to 

understand the 
consequences of the 

kink 
Wei & Wolf, PRL 2011 Ilin et al., J. Neuro. 2013 

9 HH-like  
Wang-Buszaki models 

 

1-6, varying relevant parameters 
7-9: added channel cooperativity,  

GOAL:  
provide a predictive & mechanistic 

explanation of the kink 



hard 
threshold 

active AP-
generation 

Rapid LIF-neuron 

Case study 3: AP onset rapidness 

Vs. 

Wei & Wolf, PRL 2011 Ilin et al., J. Neuro. 2013 

V 

dV/dt 



essence detail 

Case study 2 

Trade-off between:  

 how much you can describe  

  and  

 how little you have to consider 

Jim Bower 

Cristof Koch 

Vs. 

detailed enough to provide some 
explanations of the mechanism 

Simple enough to allow for deep 
understanding of the consequences 

1st two directors of 
MBL course in 1988 



Case study 3: fitting a compartmental neuron model 

Purkinje 
cell 

LP neuron 



Case study 3 

implemented in NEURON implemented in NEURON 

2 cells: ~1500 compartments, 2 channels,  1 cell: 4 compartments, 10 channels 

Parameters tuned to reproduce back-
propagating AP, n=5 

6x10^5 models with random parameter 
samples, selected 1300 using criteria from 3 
simulations (nothing, step,periodic inhibition)  

1500-compartment 
conductance-based 

model 

4-compartment 
conductance-
based model 

Vetter et al. J. Neurophysio. 2000 Taylor et al. Nat. Neuro. 2009 



Case study 3 

Non-convex, but connected set of good models 

1500-compartment 
conductance-based 

model 

4-compartment 
conductance-based 

model 

• Back-propagation absent 
• insensitive to channel densities 

Purkinje 
cell 

Vetter et al. J. Neurophysio. 2000 Taylor et al. Nat. Neuro. 2009 



analysis of 
parameter space 

find ‘the one’ 
model 

• No best model, only better 
models (model selection) 

• principled approaches include 
noise model to avoid over-fitting 

 
 

(Eve) Marder & Taylor, Nat. Neuro. 2011 

Trade-off between:  

 conciseness 

      Vs.  

 robust results 

 

Henry 
Markram 

Jim Sethna 

Vs. 

 

• degeneracy: multiple 
solutions produce 
similar outputs 
(Edelmen & Gally, 
PNAS 2002) 

• Explore in minimum 
(Fisher information), 
across minimums 

• Bifurcations/phase 
transitions 
 



What have we learned from these   
case studies? 

• Approach depends on question and style 

• How much you get out depends on how much 
put in (garbage in, garbage out) 

• Detail and essence both have their roles in 
model building 

• fine-tuning may not be the way to go 

 

 

 

 

 

 



REDUCTIONS AND 
APPROXIMATIONS 



Don’t  
neglect  
Billy! 

Well, it 
depends. 



Motivation 

• Why reduce the dimension of a model? 

• What is the risk? 

• Often, direct application of classical analytical 
tools fail for complex systems.  

– One can simplify the model to fit the tool 

– One can still use the tool if the conditions fail 
mildly and the results are approximately correct 

• Sometimes, understandable/derivable limiting 
scenarios can be used to describe much of the 
phenomena 

 



Reduction 1: HH to Morris-Lecar 

 

2D=> Phase plane analysis! 



Reduction 2: Morris-Lecar to simple 
model 

• Izhikevich’s simple model 

 

 

  

But…Not analytically solvable 



NOISE AND VARIABILITY 



Variability and noise 
• Noise and variability often used interchangeably, but: 

 
• Variability is an ensemble property of what we are studying 

– e.g. across trials in experiment or in time across a time series 
– measured in various statistical ways, e.g. standard deviation 
 

• Noise is a semantic label for the part of the observed variability that 
is not explicitly modelled 
– Environment is deterministic, but so complex it looks noisy 

• Complexity from many dimensions or chaotic dynamics or both 

– Signals are often split into a deterministic part and a stochastic part  
• E.g. coarse-grained models like Brownian motion 

 

• Where to draw the line between system and environment? 
– determines the deterministic and stochastic part of your model 

 
• How do deterministic and stochastic analyses come together? 

–How do they inform each other? 



A example of drawing the line 

K 

 
𝑖 
 

\\ 

• Fully deterministic network simulation in 
asynchronous, irregular state 

• LIF receiving network input 

 

 

• As 𝜔 → 0,𝐾 → ∞  (diffusion approximation) 

 

• Study transfer properties as a function of the 
process (mean, variance, correlation time) 

 

Capocelli and Ricciardi 1971 

time 



An example of a stochastic effect: 
 fI-curve linearization by noise 

mean and std. dev. 



Concluding thoughts 

• Any one who does science knows that there 
are many routes to knowledge and that the 
'scientific method' of high school is an 
idealization.  

• Nevertheless, every true master that 
innovates, knows the prescribed methods of 
their discipline even if they find them lacking. 

• So, when learning a tool, try hard to 
understand it’s limits! 
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How strict are your simplifying 
assumptions? 

• Diffusion approximation 



Excitatory inputs: conductance-based 
or current-based.  

• State-dependent conductance is a pain.  

• Since excitatory reversal potential far away,  



Reductions 

• In search of minimal DOFs 

 

 


