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Motivation

e As funded scientists, we have a responsibility

to the enterprise to pursue efficient routes to
knowledge

* There are good and bad applications of tools

* A toolbox becomes a scientific arsenal when
you know when to use what tool (which
means knowing their limitations and how far
beyond those limitations they can still be
profitably used)



Outline

Why theory and what is it?

Neurophysiology case studies in modelling
methodologies

1. population coding in retina (Olivier & Agos)
2. AP-onset rapidness (Brette)
3. dendritic morphology

Bonus part 1: Approximations and reductions
Bonus part 2: Noise and variability



WHY THEORY?
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(Hypothesis-based) Strong  Inference

Certain systematic methods of scientific thinking

may produce much more rapid progress than others.
practiced and taught. On any given

morning at-the Laboratory of Molecu-
lar Biology in Cambridge, England,
the blackboards of Francis Crick or
Sidney Brenner will commonly be
found covered with logical trees. On
the top line will be the hot new result
just up from the laboratory or just in Why

by letter or rumor. On the next line donlt we
will he two or three alternative ex- .
planations, or a little list of "What he JUSt
did wrong.” Underneath will be a se-
ries of suggested experiments or con-
trols that can reduce the number of
possibilities. And so on. The tree grows
during the day as one man or another trees?
comes in and argues about why one
of the experiments wouldn’t work, or
how it should be changed.

John R. Platt

make
decision




An upgrade to experlmental suenc

why theory?

Experimental research programs can become method-centric: the tools
risk becoming the hypotheses.

Beyond a handful of interacting elements, the human capacity to analyze a
system through plain intuition and exhaustive enumeration of the
possibilities breaks down.

Concepts need an 'open source' framework to be useful to the community,
not just mental pictures in an investigator's head or even in the paper.

With models, we can explore parameter regimes not attainable
experimentally for practical or ethical reasons

Pre-experiment:

Manipulations in experimental protocols are extremely laborious, but with
well written code, they can be made in a model with the push of a button.

So models can often raise and discount hypotheses more quickly than
experiments, letting us focus the experimental effort on the questions that
are most informative or interesting.

Post-experiment:

Theory can help interpret regularities in data in the common case when
no obvious interpretation exist.

While data can be context-dependent (e.g. cell prep is special) and
incomplete (e.g. only for subsystem), models can integrate information
about a various parts of a system obtained through various ways



Can’t this be automated?

Machine learning (e.g. classification and
regression algorithms) applied to neural data to
reveal hidden structure is essential to
neuroscience...but, e.g.

03 (2012) PHYSICAL REVIEW LETTERS

eon
3

Extracting Dynamical Equations from Experimental Data is NP Hard

So, don’t wait for an algorithm to do it for you.



Jorge Luis Borges, Collected Fictions

On Exactitude in Science:
...In that Empire, the Art of Cartography h OW Muc h d eta | I ?

attained such Perfection that the map of a
single Province occupied the entirety of a City,

and the map of the Empire, the entirety We | | th ere
of a Province. In time, those Unconscionable !
Maps no longer satisfied, and the iS
Cartographers Guilds struck a Map of the
Epmini ' ire, and

"we now use the country itself, as The on |y

its own map, and | assure you it

50
does nearly as well.“-Lewis Carroll eir one

Forebears had been, saw that that vast Map t ru t h .
was Useless, and not without some Pitilessness
was it, that they delivered it up to the

Inclemencies of Sun and Winters. In the Deserts

of the West, still today, there are ...SO mod el bu I |dOZ : r
Tattered Ruins of that Map, inhabited by

Animals and Beggars; in all the Land there is W|t h q ua rks ?
no other Relic of the Disciplines of Geography.

—Suarez Miranda,Viajes de varones prudentes,
Libro IV,Cap. XLV, Lerida, 1658 -Goldenfeld & Kadanoff, Science (1999)




Not all DOFs in a system are ‘active’ in
the function under study

e.g. how many dimensions do you need to
reconstruct the attractor of a lobster stomatogastric
CPG neuron voltage trace?  spo

. . F b 4
* Time-delay embedding 400 | ®) ]
Vier Ve Ve V_, Ve, V z
“— - . — ,. t-1 Ve Vev1) e .
o £ _fanswer:
© 4 o .
e )
T E
e Method of false nearest g 200
. ® O et ‘
neighbors: K
10.0 + )
00 L——u—u 1 b
[ 1 2 3 45 6 7 8 9 10
Dimension

Abarbanel et al. Neuro. Comp. 1996



Approach depends on goal

Practical Models

Theoretical Models

Main goals are management, design, and

prediction

Numerical accuracy is desirable, even at

the expense of simplicity

Processes and details can be ignored only
if they are numerically unimportant

Assumptions are quantitative

representations of system processes

System and question specific

Main goals are theoretical understanding

and theory development

Numerical accuracy is not essential; the

model should be as simple as possible

Processes and details can be ignored if
they are conceptually irrelevant to the

theoretical issues

Assumptions may be qualitative
representations of hypotheses about the
system, adopted conditionally in order
to work out their consequences

Applies to a range of similar systems

Ch.1, Ellner & Guckenheimer 2006



Theory models

e Einstein said:
“A model should be as simple as possible but not simpler.”
 He also said:

“It is just as much an intellectual offense to include a detail
that is unnecessary as to exclude one that is.”

modgl solution
assumptions properties

| A

* All models are wrong; some are useful (i.e. those that are well
chosen).



3 CASE STUDIES IN MODELLING
METHODOLOGIES



Case study 1: assessing retinal population coding

Macaque salamander



Case study 1: assessing retinal population coding

generalized maximum
linear entropy

Versus

models models
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where the Lagrange multipliers {h;, J;;} have to be chosen so that the
averages {(o;), (0,0} in this distribution agree with experiment; the

Pillow et al., Nature 2008
Schneidman et al., Nature 2006



Case study 1

generalized maximum
|inear Vs. entrC)py

models models

a generative model a statistical model
(generates output from input) (of pattern probabilities)

N _cells=27 N_cells=40
N_paras=70/filter *(4*27 filters)>5000 N_paras=55 (for N=10)

Fitted using maximum likelihood to 7min | convex optimization constrained by 15t & 2nd
of spike responses order statistics

Test with no coupling Test with conditional independence



Case study 1

generalized
linear Vs,
models
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-compute information directly
-can extrapolate to larger networks
-can’t assess stimulus dependence



Case study 1
Inquisitive

w.  Parsimony
Power

-no curse of dimensionality
-stronger arguments
-fewer questions can be answered

-dimensionality a problem
-can ask more

Trade-off between:

how much you can ask

and

how little you have to assume



Membrane potential (mV)

Case study 2: causes and effects of action
potential onset rapidness

40

In wivo Model

0 1 2 3 d 0 1 2 3 4
Time (ms)



Case study 3: AP onset rapidness

active AP- hard

. Vs.
generation threshold
9 HH-like Rapid LIF model
Mode Wang-Buszaki models ,;,.“ ' 4 |
\ D e r=1 /
| o) ‘ ‘
1-6, varying relevant parameters 2 | H..f
| 7-9: added channel cooperativity, . M
. O 1 v, A
5 [l -1 _10 - -
me (V)= |14+exp| — B = t(ms)
! GOAL:
m! (Vy=m., (V+KJ(m’ (V)" h) tractable model with

variable rapidness to
understand the

consequences of the
kink

llin et al., J. Neuro. 2013 Wei & Wolf, PRL 2011

GOAL:
provide a predictive & mechanistic
explanation of the kink



Case study 3: AP onset rapidness

active AP- hard
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Case study 2

detail v essence
detailed enough to provide some Simple enough to allow for deep
explanations of the mechanism understanding of the consequences

i
7\

Cristof Koch - ?
15t two directors of { °

MBL course in 1988 B =

N

WS Jim Bower

Trade-off between:
how much you can describe
and

how little you have to consider




Case study 3: fitting a compartmental neuron model
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Case study 3

1500-compartment 4-compartment
conductance-based conductance-

model based model

implemented in NEURON implemented in NEURON

2 cells: ¥1500 compartments, 2 channels, 1 cell: 4 compartments, 10 channels

Parameters tuned to reproduce back- 6x1075 models with random parameter
propagating AP, n=5 samples, selected 1300 using criteria from 3
simulations (nothing, step,periodic inhibition)

Property Lower bound Upper bound
Input conductance (nS) 36 132
Resting membrane potential (mV) —475 —32.5
Resting spike rate (Hz) 13.1 30.6
Phase of burst onset (%) 320 44.0
Phase of burst offset (%) 61.7 74.9
Spike rate in burst (spikes/cycle) 16.3 30.2
Slow-wave amplitude (mV) 125 27.5

Peak slow-wave potential (mV) —475 =325

151 coefficient of variation in burst 0 0.25

Vetter et al. J. Neurophysio. 2000 Taylor et al. Nat. Neuro. 2009



Case study 3

1500-compartment 4-compartment
conductance-based conductance-based

model model
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Vetter et al. J. Neurophysio. 2000 Taylor et al. Nat. Neuro. 2009



find ‘the one’ analysis of
model *  parameter space

e degeneracy: multiple
solutions produce
similar outputs
(Edelmen & Gally,
PNAS 2002)

* Explore in minimum <&

Fisher information),

;cross minimums ) L’ 01

* Bifurcations/phase
transitions

* No best model, only better
models (model selection)

e principled approaches include
noise model to avoid over-fitting

Trade-off between:

conciseness
Vs.

% _Markram
<

robust results

(Eve) Marder & Taylor, Nat. Neuro. 2011



What have we learned from these
case studies?

* Approach depends on question and style

* How much you get out depends on how much
out in (garbage in, garbage out)

 Detail and essence both have their roles in
model building

* fine-tuning may not be the way to go



REDUCTIONS AND
APPROXIMATIONS

10 mV

1ms

e e e e T ———
- o ———



T FEeEL L\KE
WERE NEGLECTWNG
L\TTLE @\LLY.

\T'S OWAY.
HE'S GMALL.

Don’t
neglect
Billy!

Well, it
depends.



Motivation

Why reduce the dimension of a model?
What is the risk?

Often, direct application of classical analytical

tools fail for complex systems.

— One can simplify the model to fit the tool

— One can still use the tool if the conditions fail
mildly and the results are approximately correct

Sometimes, understandable/derivable limiting

scenarios can be used to describe much of the

phenomena



Reduction 1: HH to Morris-Lecar

100

| | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
time, t (ms)
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N f—’_\ ra e Ty
CV = I—ggn'(V—Ex)— gnam’ (V)(0.89—1.1n)(V — Exa) — g.(V — Ev)

n = (ﬂ.xﬂ’r) - n‘)/Tﬂ (F) )

2D=> Phase plane analysis!



didt (Volt 57"}

Reduction 2: Morris-Lecar to simple
model

Izhikevich’s simple model
v = T+v°—u if v > 1, then
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NOISE AND VARIABILITY



Variability and noise

Noise and variability often used interchangeably, but:

Variability is an ensemble property of what we are studying
— e.g. across trials in experiment or in time across a time series
— measured in various statistical ways, e.g. standard deviation

Noise is a semantic label for the part of the observed variability that
is not explicitly modelled

— Environment is deterministic, but so complex it looks noisy
* Complexity from many dimensions or chaotic dynamics or both

— Signals are often split into a deterministic part and a stochastic part
e E.g.coarse-grained models like Brownian motion

Where to draw the line between system and environment?
— determines the deterministic and stochastic part of your model

How do deterministic and stochastic analyses come together?

—How do they inform each other?



A example of drawing the line

Fully deterministic network simulation |n

30 ! .
asynchronous, irregular state !l_i-i. i R
LIF receiving network input .~ f."; ,.'J'.'.f. . M'_:.
K llL .I I.l l II-I iR 1N llIlI
dV V I(t) 10 -.l ' { ‘ “l: Ill" | '
—_— e — —_— . _t.. ¥ | Tl Ml SRR L
7 i XY
time

As w = 0, K — oo (diffusion approximation)

dV Capocelli and Ricciardi 1971
rm S = V() + RI(t) @

Study transfer properties as a function of the
process (mean, variance, correlation time)



An example of a stochastic effect:
fl-curve linearization by noise

dV
C o= —gL(V = Vo) +¥(V) + 1(1)
60 ———
50 |- o mV
V-V B
MV)=£L&TEKP( TT) = 40| gjj;ng

L 30
I(t) = grpu(t) +o(t)y/Cgrn(t) >
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Concluding thoughts

* Any one who does science knows that there
are many routes to knowledge and that the
'scientific method' of high school is an
idealization.

* Nevertheless, every true master that
innovates, knows the prescribed methods of
their discipline even if they find them lacking.

* So, when learning a tool, try hard to
understand it’s limits!
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How strict are your simplifying
assumptions?

* Diffusion approximation



Excitatory inputs: conductance-based
or current-based.

e State-dependent conductance is a pain.
* Since excitatory reversal potential far away,



Reductions

* |n search of minimal DOFs



