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1. Entropy and Information in a Dynamical System

How can dynamics affect the information about the state of a dynamical sys-
tem? In particular, we want to know how the map of a dynamical system influences
the amount of information we obtain about the state of the system.

1.1. What is state information?

Definition 1.1. With a partition, α = {αi}, and a measure, µ, on a space,
X, the entropy of the partition is

(1.1) H(α) =
∑

µ(αi) log(µ(αi)).

More generally, a cover can be used instead of a partition. One can also forgo
defining a measure by just using the uniform measure on α, or, given a probabil-
ity density function, ρ, use µ(αi) :=

∫
αi
ρdx. In the latter case, the measure is

of probability and one obtains the Shannon entropy of the partition, interpreted
as a measure of the average uncertainty associated with observing the state in a
particular partition element.

If the partition is a realization of the finite measurement precision with which
we can specify the state of the system, the information about the system acquired
through such a measurement is the average reduction in our prior uncertainty about
in which partition element the system resides, as captured by the entropy,

I(α) := Hbefore −Hafter(1.2)

= H(α)− 0(1.3)

I(α) = H(α)(1.4)

1.2. What is the question? Now, given a map, T : X → X, we can ask
what additional information we can obtain about the state. In particular, with the
knowledge that x ∈ αi, what more does Tx,T 2x,..., i.e. future iterates of x, tell
us?

While this is perhaps the most natural question given the context, and so the
one that we consider in what follows, there are important other questions that
we encourage the reader to consider. For example, what additional information is
associated to how the map evolves distributions on X (see section on information
loss), or what information do past iterates of x contain about future iterates of x.
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Figure 1. Refining our knowledge of x with back iterated parti-
tion elements. See text for more details.

1.3. The conceptual answer through an example. For purposes of ex-
ample, consider a uniform measure on the partition given in Fig.1. The information
associated with a measurement that determines in which partition element the sys-
tem resides is

I = log |α|(1.5)

= log 3.(1.6)

Now, with access to the evolution of the system as defined by the map T , and
knowing x ∈ α2, we specify x in a refined partition α ∨ T−1α:

(1) x is mapped forward using T and we observe Tx ∈ α3.
(2) The pre-image set of α3 must then contain x.
(3) x is thus contained in the intersection of α2 and T−1α3,

So now that x can be specified in an element of the refined partition α∨ T−1α, we
receive more information upon measurement of x,

I = log
∣∣α ∨ T−1α∣∣(1.7)

= log 7.(1.8)

We can apply this procedure using higher powers of T so that the sequence of
partition elements occupied through successive applications of the transformation,
Tx, T 2x, ..., generates an ever refined partition, α∨T−1α∨T−2α∨ ..., within which
the state, x, can be uniquely specified with ever higher precision. Thus,

occupancy ≈ refinement

in time in space

This is a core idea in symbolic dynamics where symbolic trajectories, i.e. sequences
of partition elements (akin to Shannon-style symbolic strings, or ‘words’), can be
mapped to initial conditions.

2. Entropies and their Relations

The program we have followed is to study the controlled asymptotic behaviour
of something like ηN = H(α ∨ ... ∨ T−N+1α) in spaces with different structures.



REVIEW OF LECTURES 5-8: ENTROPY IN DYNAMICAL SYSTEMS 3

(1)
Topological

Space
(X, τ)

: htop(T ) := sup
A

covers of X

h(A, T ), h(A, T ) := lim
N→∞

ηN
N

(2)
Probability

Space
(X,B, µ)

: hµ(T ) := sup
α

partitions of X

hµ(α, T ),
hµ(α, T ) := lim

N→∞

ηN
N

≡ lim
N→∞

ηN − ηN−1

(3)

Differentiable
Manifold
(X,B, µ)

F : M →M ,
diffeomorphism,

ẋ = F (x)

: hλ(F ) :=
∑
λi>0 λi, λi = lim

N→∞

1

N
ln
|ξ(N)|
|ξ(0)|

, ξ = δx,

with the important identities

(2)→(1): htop(T ) ≡ supµ hµ(T ) and
(3)→(2): hµ(F ) ≡ hλ(F ) under certain restrictions. (Pesin Identity)

While both htop(T ) and hµ(T ) are accessible quantities for only the most simple of
maps, hλ(F ) offers a straightforward calculation for any differentiable map, and so
the Pesin Identity is a crucial result. However, the conditions for it to apply involve
subtle notions relating measures and maps.

3. Measures and Maps: Two Approaches

3.1. Given µ, study T ’s that preserve µ, i.e. µ(T−1αi) = µ(αi). The key
property used for the Pesin Identity is that of ergodicity.

Definition 3.1. A transformation, T , is ergodic with respect to µ if T -invariant
subsets of X have full or null measure.

The general importance of ergodicity is seen in the following theorem.

Theorem 3.2 (Birkhoff). If T is ergodic, for any f ∈ L(µ) and for µ-almost
all x:

(3.1) lim
N→∞

1

N

N−1∑
i=0

f(TNx) =

∫
fdµ

In other words,a single orbit samples the whole (µ-relevant) space.
The Lyapunov exponents, as quantities calculated as averages over trajectories,

are subject to this theorem, which ensures their uniqueness regardless of starting
point, x, and their relevance as a legitimate property of the attractor. This theorem
thus provides the logic behind the Pesin Identity. However, the key assumption on
T , that of ergodicity, is difficult to prove in general. For that reason, a second
approach is often taken (see next section).

The practical limitation provided by the supremum over partitions is addressed
in the following definition and theorem.

Definition 3.3. A partition, α, is generating if, for the finite subalgebra of B,
A, that it generates,

(3.2)

∞∨
N=−∞

TNA = B.
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Theorem 3.4 (Kolmolgorov-Sinai). For an invertible, measure-preserving T
of (X,B, µ), if α is a generating partition

(3.3) hµ = hµ(α, T ).

In other words, a generating partition achieves the supremum in the definition
of hµ(T ). In practice, the heuristic is to take a partition of hypercubes of size ε� 1.
See pg. 198-202 of Vulpiani.

3.2. Given T , study µ’s that are invariant under T . The existence of such
an invariant measure is guaranteed by a fixed-point theorem applied the measure-
evolving Perron-Frobenius operator.

When T is ergodic with respect to this µ we can apply Birkhoff’s Theorem, on
which the following important theorem by Ruelle relies.

Theorem 3.5 (Ruelle). For µ an F-invariant probability measure on M

(3.4) hµ(F ) ≤
∫ ∑

i:λi>0

λi(x)dλ(x)

If, in addition, F is C2 and ergodic (with µ equivalent to the Reimannian metric),
then

(3.5) hµ(F ) ≡
∑
i:λi>0

λi(x) (Pesin Identity).

However, the equation in Birkhoff’s theorem holds for µ-almost all x and µ may
only have support on an unphysical subset of X (where physical means typical, e.g.
stable in the presence of noise, in the physical system that the model purports to
represent). Thus, since we are interested in physical systems, the following is a
useful property of a measure.

Definition 3.6. A T -invariant measure, µ, is SRB (Sinai-Ruelle-Bowen) if
Birkhoff’s equation holds for all f ∈ C2 and for all x ∈ B ⊆ M , where B has finite
Lebesgue measure.

In other words, SRB measures allow us to start the trajectory from any initial
condition in a Lebesgue measurable, i.e. physical, region and still end up with
Birkhoff’s ‘〈〉time = 〈〉space’ relation. SRB thus strips ergodicity down to what we
need it for in a realistic situation, articulated in the following theorem.

Theorem 3.7. For F ∈ C2, ergodicity implies SRB if and only if the Pesin
Identity holds.

That is, when SRB can be substituted for ergodicity, we can obtain hµ(F ) from
hλ(F ). As for when the substitution is valid, see the section on Hyperbolicity in
the Jost text as a start. As far as I can tell, this question is generally difficult to
answer and at the forefront of current research.


